Với giá trị nào của m thì đồ thị của hàm số y = −x^3 – 3x^2 + mx + 1 có tâm đối xứng
Bài 4 trang 31 SBT Toán 12 Tập 1: Với giá trị nào của m thì đồ thị của hàm số y = −x3 – 3x2 + mx + 1 có tâm đối xứng nằm trên trục Ox? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?
Lời giải:
Ta có: y = −x3 – 3x2 + mx + 1
y' = −3x2 – 6x + m
y'' = −6x – 6;
y'' = 0 ⇔ x = −1.
Tâm đối xứng I của đồ thị hàm số có tung độ yI = −m – 1.
I nằm trên trục Ox nên yI = 0 ⇔ = −m – 1 = 0 ⇔ m = −1.
Khi m = −1, hàm số trở thành y = −x3 – 3x2 − x + 1 và y' = −3x2 – 6x – 1.
Phương trình y' = 0 có ∆ . 0 nên có hai nghiệm phân biệt, suy ra đồ thị hàm số có hai cực trị đối xứng qua I(−1; 0), nghĩa là tung độ của hai cực trị trái dấu nhau nên đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt.
Lời giải SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:
Bài 1 trang 31 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: a) y = x(x2 – 4x);....
Bài 5 trang 31 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: a) y = 3 + ....
Bài 8 trang 32 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: a) ....
Bài 10 trang 32 SBT Toán 12 Tập 1: Cho hàm số y = (m là tham số).....
Bài 11 trang 32 SBT Toán 12 Tập 1: Cho hàm số y = (m là tham số). ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST