Cho hàm số y =(x^2 +2x - m)/( x - 1) (m là tham số). Tìm m để đồ thị hàm số đã cho có hai điểm cực trị

Bài 11 trang 32 SBT Toán 12 Tập 1: Cho hàm số y = x2+2xmx1 (m là tham số).

a) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị.

b) Chứng tỏ rằng khi m = 2, hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.

Lời giải:

a) y = x2+2xmx1

Tập xác định: D = ℝ\{1}.

Ta có: y'x22x+m2x12

a) Đồ thị hàm số đã cho có hai cực trị khi và chỉ khi phương trình y' = 0 có hai nghiệm phân biệt.

⇔ x2 – 2x + m – 2 = 0 có hai nghiệm phân biệt.

⇔ ∆' > 0 ⇔ 3 – m > 0 ⇔ m < 3.

Đồ thị hàm số đã cho có hai cực trị khi m < 3.

b) Nhận thấy m = 2 thỏa mãn điều kiện m < 3 nên khi đó hàm số có hai cực trị.

Với m = 2, ta có: y = x2+2x2x1 và y' = x22xx12.

Phương trình y' = 0  ⇔ x22xx12 = 0 ⇔ x = 0 hoặc x = 2.

Với x = 0 thì y = 2, với x = 2 thì y = 6.

Phương trình đường thẳng đi qua hai điểm cực trị có dạng y = ax + b.

Giải hệ phương trình, ta có: a.0+b=2a.2+b=6a=2b=2.

Vậy y = 2x + 2.

Lời giải SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác