Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = acăn2

Bài 7.30 trang 38 SBT Toán 11 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = a2, AA' = a3. Tính theo a khoảng cách:

a) Từ điểm A đến mặt phẳng (BDD'B').

b) Giữa hai đường thẳng BD và CD'.

Lời giải:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = acăn2

a) Kẻ AH BD tại H.

Do D'D (ABCD) nên D'D AH mà AH BD, suy ra AH (BDD'B').

Suy ra d(A, (BDD'B')) = AH.

Xét tam giác ADB vuông tại A, có 1AH2=1AD2+1AB2=12a2+1a2=32a2

AH=a63. Vậy d(A, (BDD'B')) = a63.

b) Có BC // A'D' và BC = A'D' (do BC, A'D' cùng song song và bằng AD).

Do đó BCD'A' là hình bình hành, suy ra CD' // BA', suy ra CD' // (A'BD).

Ta có CD' // (A'BD) nên d(BD, CD') = d(CD', (A'BD)) = d(C, (A'BD)).

Do ABCD là hình chữ nhật nên AC và BD cắt nhau tại trung điểm của AC nên

d(C, (A'BD)) = d(A, (A'BD)).

Kẻ AK A'H tại K.

Vì AA' (ABCD) nên A'A BD mà AH BD nên BD (A'AH), suy ra BD AK.

Vì BD AK và AK A'H nên AK (A'BD). Suy ra d(A, (A'BD)) = AK.

Vì AA' (ABCD) nên AA' AH.

Xét tam giác A'AH vuông tại A, có 1AK2=1AA'2+1AH2=13a2+96a2=116a2

AK=a6611. Vậy d(BD, CD') = a6611.

Lời giải SBT Toán 11 Bài 26: Khoảng cách hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác