Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a

Bài 7.16 trang 31 SBT Toán 11 Tập 2: Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a và AA' = a2, hình chiếu vuông góc của A trên mặt phẳng (A'B'C'D') trùng với trung điểm của B'D'. Tính góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D').

Lời giải:

Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a

Gọi O là giao điểm của A'C' và B'D'.

Khi đó, O là trung điểm của A'C' và B'D'.

Theo đề bài ta có O là hình chiếu của A trên mặt phẳng (A'B'C'D').

Do đó, A'O là hình chiếu vuông góc của AA' trên mặt phẳng (A'B'C'D'). Khi đó góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D') bằng góc giữa AA' và A'O. Mà (AA',A'O) = AA'O^.

Vì hình hộp ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a nên A'B'C'D' là hình vuông cạnh a. Do đó A'C'2 = A'B'2 + B'C'2 = a2 + a2 = 2a2 ⇒ A'C' = a2.

A'O = a22.

Xét tam giác AOA' vuông tại O, có cosAA'O^ = OA'AA'=a2=12AA'O^ = 60o.

Vậy góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D') bằng 60°.

Lời giải SBT Toán 11 Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác