Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và tam giác SAB đều

Bài 4 trang 133 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và tam giác SAB đều. Gọi M là điểm thuộc cạnh BC sao cho BM = x (0 < x < a), mặt phẳng (α) đi qua M, song song với hai đường thẳng SA và AB.

a) Xác định giao tuyến của mặt phẳng (α) với các mặt của hình chóp.

b) Tính diện tích của hình tạo bởi các đoạn giao tuyến ở câu a theo a và x.

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và tam giác SAB đều

a) Trong mặt phẳng (ABCD), kẻ MN // AB // CD, N ∈ AD.

Trong mặt phẳng (SAD), kẻ đường thẳng d đi qua S và d // AD. Qua N vẽ đường thẳng song song với SA và cắt d tại O.

Nối NO cắt SD tại P và nối MO cắt SC tại Q.

Khi đó (α) chính là mặt phẳng (OMN).

Suy ra (α) ∩ (ABCD) = MN;

            (α) ∩ (SBC) = MQ;

            (α) ∩ (SCD) = QP;

            (α) ∩ (SAD) = NP.

b) Các đoạn giao tuyến của mặt phẳng (α) với các mặt của hình chóp tạo thành tứ giác MNPQ.

Ta có CD // MN // PQ

Suy ra tứ giác MNPQ là hình thang với MN = AB = a và QMN^=SBA^=60°.

Trong ∆SBC có MQ // SB nên MQSB=MCBC (hệ quả định lí Thalès)

Mà SB = BC nên MQ = MC = a ‒ x.

Trong ∆SCD có PQ // CD nên PQCD=SQSC (hệ quả định lí Thalès).

Trong ∆SBC có MQ // SB nên SQSC=BMBC (định lí Thalès)

Do đó PQCD=BMBC, mà CD = BC nên PQ = BM = x.

Gọi H là chân đường cao kẻ từ Q đến MN.

Ta có: QM // SB, MN // AB nên góc giữa hai đường thẳng QM và MN bằng góc giữa hai đường thẳng SB và AB, hay SBA^=QMH^.

Khi đó QH = MQsinQMH^MQsin60°=ax32.

Vậy SMNPQ = 12QHMN+PQ = 12ax32a+x = a2x234 (đvdt).

Lời giải Sách bài tập Toán lớp 11 Bài tập cuối chương 4 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác