Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD

Bài 3 trang 112 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh ba đường thẳng CD, IG, HF cùng đi qua một điểm.

Lời giải:

Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD

Trong mặt phẳng (EHI), gọi O là giao điểm của HF và IG.

Ta có:

⦁ O ∈ HF, mà HF ⊂ (ACD), suy ra O ∈ (ACD);

⦁ O ∈ IG, mà IG ⊂ (BCD), suy ra O ∈ (BCD).

Do đó, O ∈ (ACD) ∩ (BCD) (1)

Mặt khác, (ACD) ∩ (BCD) = CD (2)

Từ (1) và (2), suy ra O ∈ CD.

Lại có O = HF ∩ IG nên O là giao điểm của ba đường thẳng CD, IG, HF.

Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.

Lời giải Sách bài tập Toán lớp 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác