Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD
Bài 3 trang 112 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh ba đường thẳng CD, IG, HF cùng đi qua một điểm.
Lời giải:
Trong mặt phẳng (EHI), gọi O là giao điểm của HF và IG.
Ta có:
⦁ O ∈ HF, mà HF ⊂ (ACD), suy ra O ∈ (ACD);
⦁ O ∈ IG, mà IG ⊂ (BCD), suy ra O ∈ (BCD).
Do đó, O ∈ (ACD) ∩ (BCD) (1)
Mặt khác, (ACD) ∩ (BCD) = CD (2)
Từ (1) và (2), suy ra O ∈ CD.
Lại có O = HF ∩ IG nên O là giao điểm của ba đường thẳng CD, IG, HF.
Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.
Lời giải Sách bài tập Toán lớp 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST