Bài 63 trang 50 SBT Toán 11 Tập 2

Bài 63 trang 50 SBT Toán 11 Tập 2: Giải mỗi bất phương trình sau:

Bài 63 trang 50 SBT Toán 11 Tập 2

Lời giải:

a) (0,2)2x + 1 > 1 ⇔ (0,2)2x + 1 > 0,20

⇔ 2x + 1 < 0 (do 0 < 0,2 < 1)

x<12 .

Vậy bất phương trình có tập nghiệm ;12 .

b) 272x19332x91

33..2x32136x32

 6x2(do 3 > 1)

x13.

Vậy bất phương trình có tập nghiệm ;13 .

c) 12x25x+4421x25x+422

2x2+5x422

⇔ –x2 + 5x – 4 ≥ 2 (vì 2 > 0)

⇔ –x2 + 5x – 6 ≥ 0

⇔ 2 ≤ x ≤ 3.

Vậy bất phương trình có tập nghiệm [2; 3].

d) 125x+1<1252x52x+1<532x

⇔ 5–2x – 2 < 56x ⇔ –2x – 2 < 6x (do 5 > 1)

8x<2x>14

Vậy bất phương trình có tập nghiệm 14;+ .

e) 213x2<2+14x

Bài 63 trang 50 SBT Toán 11 Tập 2

⇔ 2 – 3x < 4 – x          

⇔ –2x < 2 ⇔ x > –1.

Vậy bất phương trình có tập nghiệm (–1; +∞).

Bài 63 trang 50 SBT Toán 11 Tập 2

⇔ x – 2x2 > 2x – 6  

⇔ – 2x2 – x + 6 > 0

2<x<32.

Vậy bất phương trình có tập nghiệm 2;32.

Lời giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác