Cho dãy số (un) biết u1 = – 2 trang 51 SBT Toán 11

Bài 27 trang 51 SBT Toán 11 Tập 1: Cho dãy số (un) biết u1 = – 2, un+1=un1un  với n ∈ ℕ*. Đặt vn=un+1un  với n ∈ ℕ*.

a) Chứng minh rằng dãy số (vn) là một cấp số cộng. Tìm số hạng đầu, công sai của cấp số cộng đó.

b) Tìm công thức của vn, un tính theo n.

c) Tính tổng S=1u1+1u2+1u3+...+1u20 .

Lời giải:

a) Ta có vn=un+1un=1+1un , vn+1=1+1un+1=1+1un1un=1+1unun=1un .

Khi đó, vn+1vn=1un1+1un=1  không đổi với mọi n ∈ ℕ*.

Vậy dãy số (vn) là một cấp số cộng có số hạng đầu là v1=1+1u1=1+12=12  và công sai d = – 1.

b) Ta có vn=v1+n1d=12+n1.1=12n+1=32n .

vn=1+1un  nên 1+1un=32n 1un=12n un=212n .

Vậy vn=32n  và un=212n .

c) Từ vn=1+1un , suy ra 1un=vn1 .

Khi đó ta có S=1u1+1u2+1u3+...+1u20

          = (v1 – 1) + (v2 – 1) + (v3 – 1) + ... + (v20 – 1)

          = (v1 + v2 + v3 + ... + v20) – 20.

Mà v1 + v2 + v3 + ... + v20 là tổng 20 số hạng đầu của cấp số cộng (vn) nên

v1 + v2 + v3 + ... + v20 = Cho dãy số (un) biết u1 = – 2 trang 51 SBT Toán 11 .

Do đó, S = – 180 – 20 = – 200.

Lời giải SBT Toán 11 Bài 2: Cấp số cộng hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác