Giải SBT Toán 10 trang 18 Tập 2 Kết nối tri thức

Với Giải SBT Toán 10 trang 18 Tập 2 trong Bài 17: Dấu của tam thức bậc hai Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 18.

Bài 6.21 trang 18 Sách bài tập Toán lớp 10 Tập 2: Xét dấu các tam thức bậc hai sau:

a) f(x) = –x2 + 6x + 7;

b) g(x) = 3x2 – 2x + 2;

c) h(x) = –16x2 + 24x – 9;

d) k(x) = 2x2 – 6x + 1.

Hướng dẫn giải:

a)

f(x) = –x2 + 6x + 7 có a = –1 < 0

f(x) = 0 ⇔ –x2 + 6x + 7 = 0

Xét phương trình bậc hai –x2 + 6x + 7 = 0 có ∆ = b2 – 4ac = 62 – 4.(–1).7 = 64 > 0

Do đó, phương trình có hai nghiệm phân biệt: Xét dấu các tam thức bậc hai sau: a) f(x) = –x^2 + 6x + 7

Vậy f(x) = –x2 + 6x + 7 < 0 với x ∈ (–∞; –1) ∪ (7; +∞), f(x) = –x2 + 6x + 7 > 0 với x ∈ (–1; 7).

b)

g(x) = 3x2 – 2x + 2 có a = 3 > 0

g(x) = 0 ⇔ 3x2 – 2x + 2 = 0

Xét phương trình bậc hai 3x2 – 2x + 2 = 0 có ∆ = b2 – 4ac = (–2)2 – 4.3.2 = –20 < 0.

Vậy g(x) = 3x2 – 2x + 2 > 0 với x ∈ ℝ.

c)

h(x) = –16x2 + 24x – 9 có a = –16 < 0

h(x) = 0 ⇔ –16x2 + 24x – 9 = 0

Xét phương trình bậc hai –16x2 + 24x – 9 = 0 có ∆ = b2 – 4ac = 242 – 4.(–16).(–9) = 0

Vậy phương trình có nghiệm kép: x=34.

Vậy h(x) < 0 với x R \ {34} và h(x) = 0 tại x=34.

d)

k(x) = 2x2 – 6x + 1 có a = 2 > 0

k(x) = 0 ⇔ 2x2 – 6x + 1 = 0

Xét phương trình bậc hai 2x2 – 6x + 1 = 0 có ∆ = b2 – 4ac = (–6)2 – 4.2.1 = 28 > 0

Do đó, phương trình có hai nghiệm phân biệt: Xét dấu các tam thức bậc hai sau: a) f(x) = –x^2 + 6x + 7

Vậy k(x) < 0 với x ∈ 3-72;3+72 và k(x) > 0 với x ∈ -;3-723+72;+.

Bài 6.22 trang 18 Sách bài tập Toán lớp 10 Tập 2: Giải các bất phương trình sau:

a) 3x2 – 36x + 108 > 0;

b) –x2 + 2x – 2 ≥ 0;

c) x4 – 3x2 + 2 ≤ 0;

d) 1x2-x+112x2+x+2.

Hướng dẫn giải:

a)

Xét tam thức bậc hai f(x) = 3x2 – 36x + 108 có a = 3 > 0

Phương trình bậc hai 3x2 – 36x + 108 = 0 có ∆ = b2 – 4ac = (–36)2 – 4.3.108 = 0

Do đó, phương trình có nghiệm kép x = 6.

Do đó, f(x) = 3x2 – 36x + 108 > 0 với x ∈ ℝ\{6}

Hay tập nghiệm của bất phương trình 3x2 – 36x + 108 > 0 là S = ℝ\{6}.

b)

Xét tam thức bậc hai f(x) = –x2 + 2x – 2 có a = –1 < 0

Phương trình bậc hai –x2 + 2x – 2 = 0 có ∆ = b2 – 4ac = 22 – 4.(–1).(–2) = –4 < 0

Do đó, f(x) = –x2 + 2x – 2 < 0 với mọi x ∈ ℝ

Hay tập nghiệm của bất phương trình –x2 + 2x – 2 ≥ 0 là S = ∅.

c)

x4 – 3x2 + 2 ≤ 0

Đặt t = x2 (t ≥ 0), khi đó, bất phương trình trở thành:

t2 – 3t + 2 ≤ 0

Xét tam thức bậc hai f(t) = t2 – 3t + 2 có a = 1 > 0

Phương trình bậc hai t2 – 3t + 2 = 0 có ∆ = b2 – 4ac = (–3)2 – 4.1.2 = 1 > 0

Do đó, phương trình có hai nghiệm phân biệt là: Giải các bất phương trình sau: a) 3x^2 – 36x + 108  > 0

Do đó, f(t) = t2 – 3t + 2 < 0 với t ∈ (1; 2) ⇒ t2 – 3t + 2 ≤ 0 với t ∈ [1; 2] (thỏa mãn điều kiện t ≥ 0).

Ta có t ∈ [1; 2] ⇒ 1 ≤ t ≤ 2 ⇒ 1 ≤ x2 ≤ 2

Giải các bất phương trình sau: a) 3x^2 – 36x + 108  > 0

Hay tập nghiệm của bất phương trình x4 – 3x2 + 2 ≤ 0 là S = [-2;-1][1;2].

d)

Xét phương trình bậc hai x2 – x + 1 = 0 có a = 1 > 0 và ∆1 = (–1)2 – 4.1.1 = –3 < 0 do đó, x2 – x + 1 > 0 với mọi số thực x.

Xét phương trình bậc hai 2x2 + x + 2 = 0 có a = 2 > 0 và ∆2 = 12 – 4.2.2 = –15 < 0 do đó, 2x2 + x + 2 > 0 với mọi số thực x

Do đó, tập xác định của bất phương trình 1x2-x+112x2+x+2 là D = ℝ.

Khi đó, 1x2-x+112x2+x+2

⇔ 2x2 + x + 2 ≤ x2 – x + 1

⇔ x2 + 2x + 1 ≤ 0

⇔ (x + 1)2 ≤ 0

Do (x + 1)2 ≥ 0 với mọi số thực x nên ta có:

(x + 1)2 ≤ 0

⇔ (x + 1)2 = 0

⇔ x + 1 = 0

⇔ x = –1

Vậy tập nghiệm của bất phương trình 1x2-x+112x2+x+2 là S = {–1}.

Bài 6.23 trang 18 Sách bài tập Toán lớp 10 Tập 2: Tìm các giá trị của tham số m để phương trình x2 – 2(m – 1)x + 4m2 – m = 0

a) có hai nghiệm phân biệt;

b) có hai nghiệm trái dấu.

Hướng dẫn giải:

Xét x2 – 2(m – 1)x + 4m2 – m = 0 có:

a = 1 > 0

∆’ = [–(m – 1)]2 – 1.(4m2 – m) = m2 – 2m + 1 – 4m2 + m = –3m2 – m + 1 .

a)

Để phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt

⇔ ∆’ > 0

⇔ –3m2 – m + 1 > 0

Xét phương trình bậc hai –3m2 – m + 1 = 0 có a = –3 < 0 và ∆ma = (–1)2 – 4.(–3).1 = 13 > 0

Do đó, phương trình –3m2 – m + 1 = 0 có hai nghiệm phân biệt là:

m1=-1+136;m2=-1-136

Do đó, –3m2 – m + 1 > 0 -1-136<m<-1+136

Vậy khi -1-136<m<-1+136 thì phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt.

b) Để phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm trái dấu

⇔ ac < 0

⇔ 1.(4m2 – m ) < 0

⇔ 4m2 – m < 0

Xét phương trình bậc hai 4m2 – m = 0 có a = 4 > 0 và ∆mb = (–1)2 – 4.4.0 = 1 > 0

Do đó, phương trình bậc hai 4m2 – m = 0 có hai nghiệm phân biệt là:

m1=0;m2=14

Do đó, 4m2 – m < 0 ⇔ 0<m<14

Vậy khi 0<m<14 thì phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm trái dấu.

Bài 6.24 trang 18 Sách bài tập Toán lớp 10 Tập 2: Tìm các giá trị của tham số m để

a) –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ;

b) x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ.

Hướng dẫn giải:

a)

Xét phương trình –x2 + (m + 1)x – 2m + 1 = 0 có:

a = –1 < 0

∆ = (m + 1)2 – 4.(–1).(–2m + 1) = m2 + 2m + 1 – 8m + 4 = m2 – 6m + 5

Để –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ ⇔ Δ ≤ 0

⇔ m2 – 6m + 5 ≤ 0

Xét phương trình m2 – 6m + 5 = 0 có a = 1 > 0 và Δm = (–6)2 – 4.1.5 = 16 > 0

Do đó, phương trình m2 – 6m + 5 = 0 có hai nghiệm phân biệt là:

m1 = 1; m2 = 5

Do đó, m2 – 6m + 5 ≤ 0 ⇔ 1 ≤ m ≤ 5

Vậy khi 1 ≤ m ≤ 5 thì –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ.

b)

x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ

Xét phương trình x2 – (2m + 1)x + m + 2 = 0 có:

a = 1 > 0

∆ = [–(2m + 1)]2 – 4.1.(m + 2) = 4m2 + 4m + 1 – 4m – 8 = 4m2 – 7

Để x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ ⇔ Δ < 0

⇔ 4m2 – 7 < 0

m2<74

-72<m<72

Vậy khi -72<m<72 thì x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ.

Bài 6.25 trang 18 Sách bài tập Toán lớp 10 Tập 2: Một công ty đồ gia dụng sản xuất bình đựng nước thấy rằng khi đơn giá của bình đựng nước là x nghìn đồng thì doanh thu R (tính theo đơn vị nghìn đồng) sẽ là R(x) = –560x2 + 50 000x.

a) Theo mô hình doanh thu này, thì đơn giá nào là quá cao dẫn đến doanh thu từ việc bán bình đựng nước bằng 0 (tức là sẽ không có người mua)?

b) Với khoảng đơn giá nào của bình đựng nước thì doanh thu từ việc bán bình đựng nước vượt mức 1 tỉ đồng ?

Hướng dẫn giải:

a)

Đơn giá của bình đựng nước là x nghìn đồng (x > 0).

Doanh thu từ việc bán bình đựng nước bằng 0 tức là

R(x) = 0

⇔ –560x2 + 50 000x = 0

⇔ x = 0 (loại) hoặc x ≈ 89 (thỏa mãn)

Vậy theo mô hình đã cho, với đơn giá 89 nghìn đồng thì công ty sẽ không có doanh thu (đơn giá cao quá dẫn đến không có ai mua hàng).

b)

Doanh thu vượt mức 1 tỉ đồng tức là

R(x) = –560x2 + 50 000x > 1 000 000

⇔ –560x2 + 50 000x – 1 000 000 > 0

Xét phương trình bậc hai –560x2 + 50 000x – 1 000 000 = 0 có:

a = –560 < 0

Δ’ = 25 0002 – (–560).(– 1 000 000) = 65 000 000 > 0

Do đó, phương trình bậc hai –560x2 + 50000x – 1000000 = 0 có hai nghiệm phân biệt là:

x1 ≈ 59,04; x2 ≈ 30,25.

Do đó, –560x2 + 50 000x – 1 000 000 > 0 ⇔ 30,25 < x < 59,04 hay 31 < x < 59.

Vậy với khoảng đơn giá từ 31 nghìn đồng đến 59 nghìn đồng của bình đựng nước thì doanh thu từ việc bán bình đựng nước vượt mức 1 tỉ đồng.

Bài 6.26 trang 18 Sách bài tập Toán lớp 10 Tập 2: Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s, hợp với phương ngang một góc bằng 45°. Biết rằng khi bỏ qua sức cản của không khí, quỹ đạo chuyển động của một vật ném xiên sẽ tuân theo phương trình:

y=-g2vo2cos2αx2+xtanα,

trong đó x là khoảng cách (tính bằng mét) vật bay được theo phương ngang, vận tốc ban đầu v0 của vật hợp với phương ngang một góc α và g = 9,8 m/s2 là gia tốc trọng trường.

a) Viết phương trình chuyển động của viên đạn.

b) Để viên đạn bay qua một ngọn núi cao 4 000 mét thì khẩu pháo phải đặt cách chân núi một khoảng cách bao xa ?

Hướng dẫn giải:

a)

Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s, hợp với phương ngang một góc bằng 45° nên ta có:

g = 9,8 m/s2 ; v0 = 500 m/s; α = 45°

Phương trình chuyển động của viên đạn là:

Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s

b)

Để viên đạn bay qua một ngọn núi cao 4 000 mét thì

y=-9,8250000x2+x>4000

-9,8250000x2+x-4000>0

Xét phương trình bậc hai -9,8250000x2+x-4000=0 có:

a = -9,8250000 < 0

Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s

Do đó, phương trình bậc hai -9,8250000x2+x-4000=0 có hai nghiệm phân biệt là:

x1 ≈ 20 543; x2 ≈ 4 967

Do đó, -9,8250000x2+x-4000>0 ⇔ 4 967 < x < 20 543

Vậy khẩu pháo phải đặt cách chân núi trong khoảng từ 4 967 m đến 20 543 m (tất nhiên là phải tính đến tầm bắn của khẩu pháo nữa) thì viên đạn sẽ bay qua đỉnh núi.

Lời giải sách bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác