Giải SBT Toán 10 trang 66 Tập 1 Kết nối tri thức

Với Giải SBT Toán 10 trang 66 Tập 1 trong Bài 11: Tích vô hướng của hai vectơ Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 66.

Bài 4.36 trang 66 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

a) Tìm toạ độ của điểm C thuộc trục hoành sao cho C cách đều A và B.

b) Tìm toạ độ của điểm D thuộc trục tung sao cho vectơ DA+DB có độ dài ngắn nhất.

Lời giải:

a) Vì C cách đều A và B nên CA = CB

AC2 = BC2

Giả sử C(x; 0) là điểm thuộc trục hoành

Với A(1; 1); B(7; 5) và C(x; 0) ta có:

AC=x1;1 AC2 = (x – 1)2 + (–1)2

AC2 = x2 – 2x + 2

BC=x7;5 BC2 = (x – 7)2 + (–5)2

BC2 = x2 – 14x + 74

Do đó AC2 = BC2

x2 – 2x + 2 = x2 – 14x + 74

12x = 72

x = 6

Vậy C(6; 0).

b) Gọi M là trung điểm của AB.

Khi đó DA+DB=2DM

Do đó để vectơ DA+DB có độ dài ngắn nhất thì vectơ 2DM có độ dài ngắn nhất

DM có độ dài ngắn nhất

Hay DM2 nhỏ nhất.

Giả sử D(0; y) là điểm thuộc trục tung

Với A(1; 1); B(7; 5) và D(0; y) ta có:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)

M(4; 3)

DM=4;3y

DM2 = 42 + (3 – y)2

Hay DM2 = (y – 3)2 + 16

Vì (y – 3)2 ≥ 0 với mọi y

Nên (y – 3)2 + 16 ≥ 16 với mọi y

Hay DM2 ≥ 16 với mọi y

Dấu “=” xảy ra khi và chỉ khi y – 3 = 0 Û y = 3.

Do đó DM đạt giá trị nhỏ nhất khi D(0; 3)

Vậy D(0; 3) thì vectơ DA+DB có độ dài ngắn nhất.

Bài 4.37 trang 66 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.

b) Tìm toạ độ trực tâm H của tam giác ABC.

c) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I.

Lời giải:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)

a) Với A(–3; 2), B(1; 5) và C(3; −1) ta có:

AB=4;3AC=6;3

46=2333=1 nên hai vectơ ABAC không cùng phương

Do đó ba điểm A, B, C không thẳng hàng

Vậy A, B, C là ba đỉnh của một tam giác.

Vì G là trọng tâm của tam giác ABC nên ta có:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)

Vậy tọa độ trọng tâm của tam giác ABC là: G13;2 .

b) Vì H là trực tâm của tam giác ABC nên AH BC và BH AC

Hay AH.BC=0BH.AC=0

Giả sử H(x; y) là tọa độ trực tâm tam giác ABC

Với A(–3; 2), B(1; 5), C(3; −1) và H(x; y) ta có:

AH=x+3;y2BC=2;6

AH.BC=x+3.2+y2.6=0

2x – 6y = –18

x – 3y = –9 (1)

BH=x1;y5AC=6;3

BH.AC=x1.6+y5.3=0

6x – 3y = –9 (2)

Trừ vế theo vế (2) cho (1) ta có:

5x = 0 x = 0

y = 3

H(0; 3)

Vậy tọa độ trực tâm của tam giác ABC là H(0; 3)

c) Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:

AH=2IM với M là trung điểm của BC.

Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Với A(–3; 2), B(1; 5), C(3; −1), H(0; 3) và I(a; b) ta có:

AH=3;1

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)

M(2; 2)

IM=2a;2b

2IM=42a;42b

Ta có AH=2IM

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)

Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là I12;32.

Bài 4.38 trang 66 sách bài tập Toán lớp 10 Tập 1: Cho ba điểm M, N, P. Nếu một lực F không đổi tác động lên một chất điểm trong suốt quá trình chuyển động của chất điểm, thì các công sinh bởi lực F trong hai trường hợp sau có mối quan hệ gì với nhau?

a) Chất điểm chuyển động theo đường gấp khúc từ M đến N rồi tiếp tục từ N đến P.

b) Chất điểm chuyển động thẳng từ M đến P.

Lời giải:

a) Do lực F không đổi tác động lên một chất điểm trong suốt quá trình chuyển động của chất điểm nên công sinh bởi lực F khi chất điểm chuyển động theo đường gấp khúc từ M đến N rồi tiếp tục từ N đến P là:

A1 = F.MN+F.NP

A1=F.MN+NP

A1 =F.MP (1)

b) Do lực F không đổi tác động lên một chất điểm trong suốt quá trình chuyển động của chất điểm nên công sinh bởi lực F khi chất điểm chuyển động thẳng từ M đến P là:

Cho ba điểm M, N, P trang 66 sách bài tập Toán lớp 10 Tập 1

Bài 4.39 trang 66 sách bài tập Toán lớp 10 Tập 1: Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm A, B, C, D và O. Số các vectơ khác vectơ - không và cùng phương với AC là:

A. 6;

B. 3;

C. 4;

D. 2.

Lời giải:

Đáp án đúng là: A

Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm

Các vectơ khác vectơ - không và cùng phương với AC là: AC,CA,AO,OA,OC,CO.

Vậy có 6 vectơ khác vectơ - không và cùng phương với AC.

Vậy ta chọn phương án A.

Bài 4.40 trang 66 sách bài tập Toán lớp 10 Tập 1: Cho đoạn thẳng AC và B là một điểm nằm giữa A, C. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?

A. Hai vectơ ABCB cùng hướng;

B. Hai vectơ CABC cùng hướng;

C. Hai vectơ ABAC cùng hướng;

D. Hai vectơ ACBA cùng hướng.

Lời giải:

Đáp án đúng là: C

Cho đoạn thẳng AC và B là một điểm nằm giữa A, C

Vì B nằm giữa A và C nên ta có:

ABCB ngược hướng. Do đó phương án A sai.

CABC ngược hướng. Do đó phương án B sai.

ABAC cùng hướng. Do đó phương án C đúng.

ACBA ngược hướng. Do đó phương án D sai.

Vậy ta chọn phương án C.

Lời giải Sách bài tập Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ Kết nối tri thức hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác