Giải SBT Toán 10 trang 38 Tập 1 Kết nối tri thức

Với Giải SBT Toán 10 trang 38 Tập 1 trong Bài 6: Hệ thức lượng trong tam giác Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 38.

Bài 3.7 trang 38 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC có A^=45°,C^=30° và c = 12.

a) Tính độ dài các cạnh còn lại của tam giác.

b) Tính độ dài bán kính đường tròn ngoại tiếp của tam giác.

c) Tính diện tích của tam giác.

d) Tính độ dài các đường cao của tam giác.

Lời giải:

Cho tam giác ABC có góc A = 45 độ

Xét DABC có A^+B^+C^=180°

B^=180°A^C^=180°45°30°=105°.

Áp dụng định lí sin ta có: asinA=bsinB=csinC

Suy ra:

+ a=csinC.sinA=12sin30°.sin45°

a=1212.22=122;

+ b=csinC.sinB=12sin30°.sin105°

b=1212.6+24=66+62.

Vậy a=122;b=66+62.

b) Theo định lí sin ta có csinC=2R

R=c2sinC=122.sin30°=12.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC bằng 12.

c) Áp dụng công thức diện tích tam giác ta có:

S=12.bcsinA=12.66+62.12.sin45°

=6.66+62.22=363+36.

Vậy diện tích tam giác ABC bằng 363+36.

d) Áp dụng công thức diện tích tam giác ta có:

S=12aha=12bhb=12chc

Do đó:

+ ha=2Sa=2.363+36122=36+32;

+ hb=2Sb=2.363+3666+62=62;

+ hc=2Sc=2.363+3612=63+6.

Vậy độ dài các đường cao ha, hb, hc của tam giác ABC lần lượt là ha=36+32; hb=62; hc=63+6.

Bài 3.8 trang 38 sách bài tập Toán lớp 10 Tập 1: Tam giác ABC có a = 19, b = 6 và c = 15.

a) Tính cosA.

b) Tính diện tích tam giác.

c) Tính độ dài đường cao hc.

d) Tính độ dài bán kính đường tròn nội tiếp của tam giác.

Lời giải:

a) Áp dụng định lí côsin cho DABC ta có:

a2 = b2 + c2 – 2bc.cosA

cosA =b2+c2a22bc=62+1521922.6.15=59.

Vậy cosA = 59.

b) Tam giác ABC có a = 19, b = 6 và c = 15

Khi đó:

p=a+b+c2=19+6+152=20.

p – a = 1;

p – b = 14;

p – c = 5.

Áp dụng công thức Heron ta có:

S=ppapbpc=20.1.14.5=1014.

Vậy diện tích DABC bằng 1014.

c) Áp dụng công thức diện tích tam giác ta có:

Sb=12chc

hc=2Sc=2.101415=4143.

Vậy độ dài đường cao hc=4143.

d) Áp dụng công thức diện tích tam giác ta có:

S = pr r=Sp=101420=142.

Vậy bán kính đường tròn nội tiếp tam giác ABC bằng 142.

Lời giải Sách bài tập Toán lớp 10 Bài 6: Hệ thức lượng trong tam giác Kết nối tri thức hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác