Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến

Bài 6.6 trang 8 Sách bài tập Toán lớp 10 Tập 2: Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến, nghịch biến của chúng.

a) y=-12x+5;

b) y = 3x2;

c) Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến

Lời giải:

a)

Xét hàm số y=-12x+5

Ta có:

Khi x = 0 thì y=-12.0+5=5

Khi x = 10 thì y=-12.10+5=0

Do đó, đồ thị hàm số là đường thẳng đi qua hai điểm (0; 5) và (10; 0).

Ta có hình vẽ đồ thị hàm số:

Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến

Tập giá trị của hàm số là: T = ℝ.

Đồ thị hàm số luôn đi xuống từ trái sang phải do đó hàm số nghịch biến trên ℝ.

b)

Xét hàm số y = 3x2

Ta có:

Trục đối xứng: x = 0

Đỉnh parabol là: (0; 0)

Khi x = 1 thì y = 3.12 = 3

Khi x = –1 thì y = 3.(–1)2 = 3

Do đó, đồ thị hàm số là parabol có đỉnh (0; 0) đi qua hai điểm (1; 3) và (–1; 3)

Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến

Tập xác định của hàm số là: T = [0; +∞).

Đồ thị hàm số đi xuống từ trái sang phải trên khoảng (–∞; 0) nên hàm số nghịch biến trên khoảng (–∞; 0).

Đồ thị hàm số đi lên từ trái sang phải trên khoảng (0; +∞) nên hàm số đồng biến trên khoảng (0; +∞).

c)

Xét hàm số Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến

+) Khi x ≥ 0, ta có:

y = x2

Do đó, đồ thị hàm số là nửa parabol có trục đối xứng x = 0, đỉnh (0; 0), đi qua điểm (1; 1).

+) Khi x < 0, ta có:

y = –x – 1

Do đó, đồ thị hàm số là một phần đường thẳng đi qua điểm (0; –1) và (–1; 0).

Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến

Tập giá trị của hàm số là: T = (–1; +∞)

Đồ thị hàm số đi xuống từ trái sang phải trên khoảng (–∞; 0) nên hàm số nghịch biến trên khoảng (–∞; 0)

Đồ thị hàm số đi lên từ trái sang phải trên khoảng (0; +∞) nên hàm số đồng biến trên khoảng (0; +∞).

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác