Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

Bài 12 trang 72 Sách bài tập Toán lớp 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD của tam giác OAB (D thuộc đoạn AB).

a) Tính OA, OB.

b) Chứng minh rằng OD=23OA+13OB.

c) Tìm toạ độ điểm D.

Lời giải:

a) Ta có: A(3; 4), suy ra OA=3;4, do đó OA = 32+42=5.

B(8; 6), suy ra OB=8;6, do đó OB = 82+62=10.

b) Do OD là đường phân giác trong của tam giác OAB nên theo tính chất đường phân giác ta có: ADBD=OAOB=510=12.

Suy ra: BD = 2AD.

Mặt khác do D thuộc đoạn AB nên hai vectơ AD,BD ngược hướng.

Do vậy, BD=-2AD.

BD=OD-OB;AD=OD-OA

Từ đó ta có: OD-OB=-2(OD-OA)

3OD=2OA+OB

OD=23OA+13OB (đpcm).

c) Gọi D(x; y), do OD=23OA+13OB, suy ra: Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

Vậy D143;143.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác