Giải SBT Toán 10 trang 19 Tập 1 Chân trời sáng tạo
Với giải sách bài tập Toán 10 trang 19 Tập 1 trong Bài tập cuối chương 1 SBT Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 19.
B. Tự luận
Bài 1 trang 19 SBT Toán 10 Tập 1: Cho ba tập hợp A, B, C thỏa mãn A ⊂ C, B ⊂ C và A ∩ B = ∅. Xét tính đúng sai của các mệnh đề sau.
a) Nếu x ∈ A thì x ∈ C;
b) x ∈ A là điều kiện cần để x ∈ C;
c) x ∈ B là điều kiện đủ để x ∈ C;
d) Nếu x ∈ A thì x ∉ B;
e) x ∈ B là điều kiện đủ để x ∉ A.
Lời giải:
a) Vì A ⊂ C nên mọi phần tử của A đều là phần tử của C nên x ∈ A thì x ∈ C, mệnh đề a) đúng.
b) Mệnh đề “Nếu x ∈ A thì x ∈ C” là mệnh đề đúng (theo câu a), do đó, “x ∈ A là điều kiện đủ để x ∈ C”, vậy b) sai.
c) Vì B ⊂ C nên mọi phần tử của B đều là phần tử của C nên x ∈ B thì x ∈ C, ta có mệnh đề đúng là “Nếu x ∈ B thì x ∈ C” hay “x ∈ B là điều kiện đủ để x ∈ C”, do đó c) đúng.
d) Do A ∩ B = ∅, nên A và B là hai tập rời nhau hay mọi phần tử của A đều khác các phần tử trong B, khi đó ta có “Nếu x ∈ A thì x ∉ B” là mệnh đề đúng, vậy d) đúng.
e) Do A ∩ B = ∅, nên A và B là hai tập rời nhau hay mọi phần tử của A đều khác các phần tử trong B, khi đó ta có “Nếu x ∈ B thì x ∉ A” là mệnh đề đúng, do đó mệnh đề còn được phát biểu dưới dạng “x ∈ B là điều kiện đủ để x ∉ A”, vậy e) đúng.
Bài 2 trang 19 SBT Toán 10 Tập 1: Cho tập hợp A = {1; 2}. Tìm tất cả các tập hợp B thỏa mãn A ∪ B = {1; 2; 3}.
Lời giải:
Ta có: A = {1; 2} và A ∪ B = {1; 2; 3}, mà 3 ∉ A, do đó 3 ∈ B, hơn nữa B ⊂ {1; 2; 3}.
Do đó, B là các tập con chứa phần tử 3 của tập {1; 2; 3}, đó là các tập: {3}, {1; 3}, {2; 3}, {1; 2; 3}.
Vậy các tập hợp B thỏa mãn yêu cầu là: {3}, {1; 3}, {2; 3}, {1; 2; 3}.
Bài 3 trang 19 SBT Toán 10 Tập 1: Cho hai tập hợp A = {1; 2; 3; 4}, B = {3; 4; 5}. Tìm tất cả các tập hợp M thỏa mãn M ⊂ A và M ∩ B = ∅.
Lời giải:
Do M ∩ B = ∅ nên M và B là hai tập hợp rời nhau hay mọi phần tử của tập hợp M đều khác các phần tử trong tập hợp B, do đó tập hợp M không chứa các phần tử 3; 4; 5. (1)
Lại có M ⊂ A, do đó mọi phần tử của M đều là phần tử của A nên M có thể chứa các phần tử 1; 2; 3; 4. (2).
Từ (1) và (2) suy ra M chỉ có thể chứa các phần tử 1; 2.
Do đó, M = {1}, M = {2}, M = {1; 2}.
Lại có ∅ ⊂ A và ∅ ∩ B = ∅, do đó M = ∅.
Vậy các tập hợp M thỏa mãn là: ∅, {1}, {2}, {1; 2}.
Bài 4 trang 19 SBT Toán 10 Tập 1: Một lớp học có 36 học sinh, trong đó 20 người thích bóng rổ, 14 người thích bóng bàn và 10 người không thích môn nào trong hai môn thể thao này.
a) Có bao nhiêu học sinh của lớp thích cả hai môn trên?
b) Có bao nhiêu học sinh của lớp thích bóng rổ nhưng không thích bóng bàn?
Lời giải:
Kí hiệu A là tập hợp các học sinh của lớp, B = {x ∈ A | x thích bóng rổ},
C = {x ∈ A | x thích bóng bàn}, D = {x ∈ A | x không thích môn nào trong hai môn}.
Theo giả thiết, ta có: n(A) = 36, n(B) = 20, n(C) = 14 và n(D) = 10.
a) Số học sinh thích một trong hai môn là:
n(B ∪ C) = n(A) – n(D) = 36 – 10 = 26 (bạn).
Số học sinh thích cả hai môn thể thao trên là:
n(B ∩ C) = n(B) + n(C) – n(B ∪ C) = 20 + 14 – 26 = 8 (bạn).
b) Số học sinh thích bóng rổ nhưng không thích bóng bàn là:
n(B \ C) = n(B) – n(B ∩ C) = 20 – 8 = 12 (bạn).
Lời giải sách bài tập Toán lớp 10 Bài tập cuối chương 1 Chân trời sáng tạo hay khác:
Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST