Viết các tập hợp sau đây dưới dạng liệt kê các phần tử

Bài 8 trang 13 SBT Toán 10 Tập 1: Viết các tập hợp sau đây dưới dạng liệt kê các phần tử:

a) A = {y ∈ ℕ | y = 10 – x2, x ∈ ℕ}; 

b) B = x|66-x

c) C = {x ∈ ℕ | 2x – 3 ≥ 0 và 7 – x ≥ 2}; 

d) D = {(x; y) | x ∈ ℕ, y ∈ ℕ, x + 2y = 8}.

Lời giải:

a) Do x, y đều là các số tự nhiên nên ta lần lượt thay các giá trị x bởi các số tự nhiên 0; 1; 2; ... vào y = 10 – x2 để tìm các số y thỏa mãn là số tự nhiên.

Với x = 0 thì y = 10 – 02 = 10;

Với x = 1 thì y = 10 – 12 = 9;

Với x = 2 thì y = 10 – 22 = 6;

Với x = 3 thì y = 10 – 32 = 1;

Với x = 4 thì y = 10 – 42 = – 6 ∉ ℕ, ta dừng lại.

Do đó các số tự nhiên y thỏa mãn tập A là 1; 6; 9; 10.

Vậy A = {1; 6; 9; 10}.

b) Vì 66-x nên 6 phải chia hết cho (6 – x) hay (6 – x) là ước tự nhiên của 6.

Mà các ước tự nhiên của 6 là: 1, 2, 3, 6.

Với 6 – x = 1, suy ra x = 5 ∈ ℕ nên x = 5 thỏa mãn.

Với 6 – x = 2, suy ra x = 4 ∈ ℕ nên x = 4 thỏa mãn.

Với 6 – x = 3, suy ra x = 3 ∈ ℕ nên x = 3 thỏa mãn.

Với 6 – x = 6, suy ra x = 0 ∈ ℕ nên x = 0 thỏa mãn.

Vậy B = {0; 3; 4; 5}.

c) Ta có: 2x – 3 ≥ 0 ⇔ x ≥ 32.

Và 7 – x ≥ 2 ⇔ x ≤ 7 – 2 ⇔ x ≤ 5.

Do đó, 32 ≤ x ≤ 5.

Mà x ∈ ℕ và 32 = 1,5 nên x là các số tự nhiên lớn hơn hoặc bằng 2 và nhỏ hơn hoặc bằng 5, đó là 2; 3; 4; 5.

Vậy C = {2; 3; 4; 5}.

d) Ta có: x + 2y = 8 ⇔ x = 8 – 2y.

Do x ∈ ℕ, y ∈ ℕ nên ta có các trường hợp sau:

+ Với y = 0 thì x = 8 – 2 . 0 = 8

+ Với y = 1 thì x = 8 – 2 . 1 = 6

+ Với y = 2 thì x = 8 – 2 . 2 = 4

+ Với y = 3 thì x = 8 – 2 . 3 = 2

+ Với y = 4 thì x = 8 – 2 . 4 = 0

+ Với y = 5 thì x = 8 – 2 . 5 = – 2 ∉ ℕ, ta dừng lại.

Do đó ta có các cặp số (x; y) thỏa mãn là: (0; 4); (2; 3); (4; 2); (6; 1); (8; 0).

Vậy D = {(0; 4); (2; 3); (4; 2); (6; 1); (8; 0)}.

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác