Cho số gần đúng a = 0,1031 với độ chính xác d = 0,002

Bài 6 trang 113 SBT Toán 10 Tập 1: Cho số gần đúng a = 0,1031 với độ chính xác d = 0,002.

Hãy viết số quy tròn của số a và ước lượng sai số tương đối của số quy tròn đó.

Lời giải:

Xét d = 0,002 ta thấy, chữ số khác 0 đầu tiên bên trái của d nằm ở hàng phần nghìn. Nên suy ra hàng lớn nhất của độ chính xác d = 0,002 là hàng phần nghìn nên ta quy tròn số a ở hàng gấp 10 lần hàng vừa tìm được, tức là hàng phần trăm.

Xét chữ số ở hàng phần nghìn của a là 3, là số bé hơn 5 nên ta suy ra được số quy tròn của a đến hàng phần trăm là 0,10.

Ta có: a = 0,10 là số gần đúng của a¯ nên sai số tuyệt đối của số gần đúng a là ∆a = | a¯ − 0,10|.

Vì số đúng a¯ thỏa mãn:

0,1031 – 0,002 = 0,1011 ≤ a¯ ≤ 0,1031 + 0,002 = 0,1051.

Nên suy ra 0,1011 – 0,10 = 0,0011 ≤ a¯ − 0,10 ≤ 0,1051 – 0,10 = 0,0051

Khi đó sai số tuyệt đối của a là ∆a = | a¯ − 0,10| ≤ 0,0051.

Áp dụng công thức ta tính được sai số tương đối của số gần đúng a là

Cho số gần đúng a = 0,1031 với độ chính xác d = 0,002

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác