Tìm khoảng đồng biến, nghịch biến của các hàm số sau trang 46 SBT Toán 10 Tập 1

Bài 4 trang 46 SBT Toán 10 Tập 1: Tìm khoảng đồng biến, nghịch biến của các hàm số sau:

a) fx=1x5 ;

b) f(x) = |3x – 1|.

Lời giải:

a) Tập xác định của hàm số là: D = ℝ \ {– 5}.

+ Xét khoảng (– ∞; – 5):

Lấy hai số x1, x2 tùy ý thuộc (– ∞; – 5) sao cho x1 < x2.

Ta có:

Tìm khoảng đồng biến, nghịch biến của các hàm số sau trang 46 SBT Toán 10 Tập 1

Vì x1, x2 (– ∞; – 5) nên x1 + 5 < 0 và x2 + 5 < 0.

Lại có: x1 < x2 nên x1 – x2 < 0.

Do đó, f(x1) – f(x2) =x1x2x1+5x2+5 < 0 hay f(x1) < f(x2).

Vậy hàm số đồng biến trên khoảng (– ∞; – 5). (1)

+ Xét khoảng (– 5; + ∞):

Lấy hai số x3, x4 tùy ý thuộc (– 5; + ∞) sao cho x3 < x4.

Ta có:

Tìm khoảng đồng biến, nghịch biến của các hàm số sau trang 46 SBT Toán 10 Tập 1

Vì x3, x4 (– 5; + ∞) nên x3 + 5 > 0 và x4 + 5 > 0.

Lại có: x3 < x4 nên x3 – x4 < 0.

Do đó, f(x3) – f(x4) =x3x4x3+5x4+5 < 0 hay f(x1) < f(x2).

Vậy hàm số đồng biến trên khoảng (– 5; + ∞). (2)

Từ (1) và (2) suy ra hàm số đã cho đồng biến trên các khoảng (– ∞; – 5) và (– 5; + ∞).

b) Với 3x – 1 ≥ 0 hay x ≥ 13, ta có: |3x – 1| = 3x – 1.

Với 3x – 1 < 0 hay x < 13, ta có: |3x – 1| = – (3x – 1) = – 3x + 1.

Khi đó ta có:

fx=3x1 khi x133x+1 khi x<13

Ta xét sự đồng biến, nghịch biến của hàm số g(x) = 3x – 1 trên khoảng 13; + và của hàm số h(x) = – 3x + 1 trên khoảng ; 13 .

+ Lấy hai số x1, x2 tùy ý thuộc khoảng 13; + sao cho x1 < x­2:

Ta có: f(x1) – f(x2) = (3x1 – 1) – (3x2 – 1) = 3(x1 – x2) < 0 (do x1 < x2 nên x1 – x2 < 0).

Suy ra f(x1) < f(x2).

Vậy hàm số g(x) đồng biến trên 13; + hay f(x) đồng biến trên 13; + . (1)

+ Lấy hai số x3, x4 tùy ý thuộc khoảng ; 13 sao cho x3 < x4:

Ta có: f(x3) – f(x4) = (– 3x3 + 1) – (– 3x4 + 1) = 3(x4 – x3) > 0 (do x3 < x4 nên x4 – x3 > 0).

Suy ra f(x3) > f(x4).

Vậy hàm số h(x) nghịch biến trên ; 13 hay f(x) nghịch biến khoảng ; 13 . (2)

Từ (1) và (2) suy ra hàm số f(x) nghịch biến trên khoảng ; 13 và đồng biến trên khoảng 13; + .

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác