Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)

Với tóm tắt lý thuyết Toán lớp 5 Ôn tập: So sánh hai phân số (tiếp theo) hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 5.

4) Một số cách so sánh khác

Dạng 1: So sánh với 1

Điều kiện áp dụng:  Phương pháp này áp dụng cho dạng bài so sánh hai phân số, trong đó một phân số bé hơn 1 và một phân số lớn hơn 1.

Ví dụ: So sánh hai phân số Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Cách giải:

Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)

Dạng 2: So sánh với phân số trung gian

Điều kiện áp dụng: Phương pháp này áp dụng khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc ngược lại. Khi đó ta so sánh với phân số trung gian là phân số có tử số bằng tử số của phân số thứ nhất, có mẫu số bằng mẫu số của phân số thứ hai hoặc ngược lại.

Phương pháp giải:

Bước 1: Chọn phân số trung gian.

Bước 2: So sánh hai phân số ban đầu với phân số trung gian.

Bước 3: Rút ra kết luận.

Lưu ý: So sánh hai phân số Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)(a, b, c, d  khác 0).

Nếu a > c và b < d (hoặc a < c và b > d  thì ta có thể chọn phân số trung gian là Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)

Ví dụ: So sánh hai phân số Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Cách giải:

Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)

Dạng 3: So sánh bằng phần bù

Điều kiện áp dụng: Nhận thấy mẫu số lớn hơn tử số ( phân số bé hơn 1) và hiệu của mẫu số với tử số của tất cả các phân số đều bằng nhau hoặc nhỏ thì ta tìm phần bù với 1.

Chú ý: Phần bù với 1 của phân số là hiệu giữa 1 và phân số đó.

Quy tắc: Trong hai phân số, phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn và ngược lại phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn .

Phương pháp giải:

Bước 1: Tìm phần bù của hai phân số.

Bước 2: So sánh hai phần bù với nhau.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Cách giải:

Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Vì 998 < 999 nênÔn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) . Do đó,Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Do đó,Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Dạng 4: So sánh bằng phần hơn

Điều kiện áp dụng: Nhận thấy tử số lớn hơn mẫu số ( phân số lớn hơn 1) và hiệu của tử số với mẫu số của tất cả các phân số đều bằng nhau hoặc nhỏ thì ta tìm phần hơn với 1.

Chú ý: Phần hơn với 1 của phân số là hiệu giữa phân số đó và 1.

Quy tắc: Trong hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn và ngược lại phân số nào có phần hơn nhỏ hơn thì phân số đó nhỏ hơn.

Phương pháp giải:

Bước 1: Tìm phần hơn của hai phân số.

Bước 2: So sánh hai phần hơn với nhau.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết)Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Giải

Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Vì 333 > 277 nênÔn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) . Do đó,Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Vậy Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Xem thêm lý thuyết Toán lớp 5 hay, chi tiết khác:

Xem thêm các bài Để học tốt Toán lớp 5 hay khác:


Giải bài tập lớp 5 sách mới các môn học