Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)

Với tóm tắt lý thuyết Toán lớp 5 Hỗn số (tiếp theo) hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 5.

1. Phép cộng và phép trừ hỗn số

* Để thực hiện phép cộng và phép trừ hỗn số, ta có hai cách làm sau:

Cách 1: Chuyển hỗn số về phân số

+ Muốn cộng (hoặc trừ) hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi cộng (hoặc) trừ hai phân số vừa chuyển đổi.

Ví dụ: Thực hiện phép tính:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Lời giải:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Cách 2: Tách hỗn số thành phần nguyên và phần phân số, sau đó thực hiện phép cộng (trừ) phần nguyên và phép cộng (trừ) phần phân số.

Ví dụ: Thực hiện phép tính: 

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Lời giải:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

2. Phép nhân và phép chia hỗn số

+ Để thực hiện nhân (hoặc chia) hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi nhân (hoặc chia) hai phân số vừa chuyển đổi.

Ví dụ: Thực hiện phép tính:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Lời giải:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

3. So sánh hỗn số

* Để thực hiện so sánh hỗn số, ta có hai cách dưới đây:

Cách 1: Chuyển hỗn số về phân số: để so sánh hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi so sánh hai phân số vừa chuyển đổi.

Ví dụ: So sánh hai hỗn số: Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Lời giải:

Ta có: Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Quy đồng mẫu số hai phân số, ta có:

Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Cách 2: So sánh phần nguyên và phần phân số. Khi so sánh hai hỗn số:

- Hỗn số nào có phần nguyên lớn hơn thì hỗn số đó lớn hơn và ngược lại hỗn số nào có phần nguyên nhỏ hơn thì hỗn số đó nhỏ hơn

- Nếu hai phần nguyên bằng nhau thì ta so sánh phần phân số, hỗn số nào có phần phân số lớn hơn thì hỗn số đó lớn hơn.

Ví dụ: So sánh các hỗn số sau:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Lời giải:

a) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Hỗn số Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)có phần nguyên bằng 2 và hỗn số Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) có phần nguyên bằng 3

Vì 2 < 3 nên Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

b) Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết)Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Hai hỗn số có cùng phần nguyên nên ta so sánh phần phân số của hai hỗn số

Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) nên Hỗn số (tiếp theo) lớp 5 (lý thuyết chi tiết) 

Xem thêm lý thuyết Toán lớp 5 hay, chi tiết khác:

Xem thêm các bài Để học tốt Toán lớp 5 hay khác:


Giải bài tập lớp 5 sách mới các môn học