Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC



Bài 71 trang 103 SGK Toán 8 Tập 1: Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE.

a) Chứng minh rằng ba điểm A, O, M thẳng hàng.

b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?

c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất?

Lời giải:

Giải bài 71 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác ADME có: Giải bài 71 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ADME là hình chữ nhật

O là trung điiểm của đường chéo DE nên O cũng là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng.

b) Kẻ AH ⊥ BC; OK ⊥ BC.

Ta có OA = OM, OK // AH (cùng vuông góc BC)

⇒ MK = KH

⇒ OK là đường trung bình của ΔMAH

⇒ OK = AH/2.

⇒ điểm O cách BC một khoảng cố định bằng AH/2

⇒ O nằm trên đường thẳng song song với BC.

Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB.

Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

c) Vì AH là đường cao hạ từ A đến BC nên AM ≥ AH (trong tam giác vuông thì cạnh huyền là cạnh lớn nhất).

Vậy AM nhỏ nhất khi M trùng H.

Kiến thức áp dụng

+ Tứ giác có ba góc vuông là hình chữ nhật.

+ Hình chữ nhật có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

+ Đường thẳng đi qua trung điểm của một cạnh và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba. Khi đó đoạn thẳng nối hai trung điểm đó được gọi là đường trung bình của tam giác.

+ Tập hợp các điểm cố định cách một đường thẳng a cố định một khoảng bằng h không đổi là hai đường thẳng song song với a và cách a một khoảng bằng h.

Các bài giải bài tập Giải bài tập Toán lớp 8 Bài 10 khác


bai-10-duong-thang-song-song-voi-mot-duong-thang-cho-truoc.jsp


Giải bài tập lớp 8 sách mới các môn học