Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung lớp 8 (hay, chi tiết)

1. Khái niệm về phương pháp đặt nhân tử chung

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Ứng dụng: Việc phân tích đa thức thành nhân tử giúp ta có thể thu gọc biểu thức, tính nhanh và giải phương trình dễ dàng.

2. Phương pháp đặt nhân tử chung

+ Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.

+ Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.

Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử.

3. Ví dụ áp dụng

Ví dụ: Phân tích đa thức sau thành nhân tử

a, 4x2 - 6x

b, 9x4y3 + 3x2y4

Lời giải:

a) Ta có : 4x2 - 6x = 2x.2x - 3.2x = 2x( 2x - 3 ).

b) Ta có: 9x4y3 + 3x2y4 = 3x2y3.3x + 3x2y3 = 3x2y3( 3x + 1 )

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học