Bài tập Tính chất ba đường cao của tam giác lớp 7 (có đáp án)
Bài viết bài tập Tính chất ba đường cao của tam giác lớp 7 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tính chất ba đường cao của tam giác.
Bài 1: Cho ΔABC, hai đường cao AM và BN cắt nhau tại H. Em hãy chọn phát biểu đúng:
A. H là trọng tâm của ΔABC
B. H là tâm đường tròn nội tiếp ΔABC
C. CH là đường cao của ΔABC
D. CH là đường trung trực của ΔABC
Lời giải:
Vì hai đường cao AM và BN cắt nhau tại H nên CH là đường cao của ΔABC và H là trực tâm tam giác ΔABC nên A, B, D sai, C đúng.
Chọn đáp án C
Bài 2: Cho ΔABC cân tại A có AM là đường trung tuyến khi đó
A. AM ⊥ BC
B. AM là đường trung trực của BC
C. AM là đường phân giác của góc BAC
D. Cả A, B, C đều đúng
Lời giải:
Vì ΔABC cân tại A có AM là đường trung tuyến nên AM cũng là đường cao, đường trung trực và đường phân giác của tam giác ABC
Chọn đáp án D
Bài 3: Cho ΔABC cân tại A, trung tuyến AM. Biết BC = 24cm, AM = 5cm. Tính độ dài các cạnh AB và AC
A. AB = AC = 13cm
B. AB = AC = 14cm
C. AB = AC = 15cm
D. AB = AC = 16cm
Lời giải:
ΔABC cân tại A (gt) mà AM là trung tuyến nên AM cũng là đường cao của tam giác đó.
Vì AM là trung tuyến của ΔABC nên M là trung điểm của BC
Bài 4: Đường cao của tam giác đều cạnh a có bình phương độ dài là
Lời giải:
Xét tam giác ABC đều cạnh AB = AC = BC = a có AM là đường trung tuyến suy ra AM cũng là đường cao của tam giác ABC hay AM ⊥ BC tại M
Vậy bình phương độ dài đường cao của tam giác đều cạnh a là (3a2)/4
Chọn đáp án A
Bài 5: Cho ΔABC nhọn, hai đường cao BD và CE. Trên tia đối của tia BD lấy điểm I sao cho BI = AC. Trên tia đối của tia CE lấy điểm K sao cho CK = AB. Chọn câu đúng
A. AI > AK B. AI < AK C. AI = 2AK D. AI = AK
Lời giải:
Chọn đáp án D
Bài 6: Cho ΔABC nhọn, hai đường cao BD và CE. Trên tia đối của tia BD lấy điểm I sao cho BI = AC . Trên tia đối của tia CE lấy điểm K sao cho CK = AB. ΔAIK là tam giác gì?
A. ΔAIK là tam giác cân tại B
B. ΔAIK là tam giác vuông cân tại A
C. ΔAIK là tam giác vuông
D. ΔAIK là tam giác đều
Lời giải:
Chọn đáp án B
Bài 7: Cho tam giác ABC không cân. Khi đó trực tâm của tam giác ABC là giao điểm của:
A. Ba đường trung tuyến
B. Ba đường phân giác
C. Ba đường trung trực
D. Ba đường cao
Lời giải:
Vì tam giác ABC là tam giác không cân nên trực tâm của tam giác ABC là giao điểm của ba đường cao.
Chọn đáp án D
Bài 8: Cho tam giác ABC vuông tại A. Lấy H thuộc AB, vẽ HE ⊥ BC ở E. Tia EH cắt tia CA tại D. Khi đó
A. H là trọng tâm của tam giác BDC
B. H là trực tâm của tam giác BDC
C. H là giao ba đường trung trực của tam giác BDC
D. H là giao ba đường phân giác của tam giác BDC
Lời giải:
Trong tam giác BDC có:
BA ⊥ CD tại A (do tam giác ABC vuông tại A) ⇒ BA là một đường cao của tam giác BDC
DE ⊥ BC tại E (do HE ⊥ BC) ⊥ DE là một đường cao của tam giác BCD
Mà DE ∩ BA = H
Do đó H là giao điểm của hai đường cao trong tam giác BDC
Suy ra H là giao điểm của ba đường cao trong tam giác BDC
Vậy H là trực tâm của tam giác BDC.
Chọn đáp án B
Bài 9: Cho tam giác ABC vuông ở A có đường cao AD. Lấy H thuộc AD và E thuộc CD sao cho HE // AC Khi đó
A. BH ⊥ AE
B. BH // AE
C. AE ⊥ AD
D. BH ⊥ AD
Lời giải:
+ Ta có: HE // AC; AC ⊥ AB (do tam giác ABC vuông tại A)
Suy ra HE ⊥ AB (quan hệ từ vuông góc đến song song)
Trong tam giác ABE có:
AD ⊥ BE tại D nên AD là một đường cao của tam giác ABE
HE ⊥ AB nên E, H thuộc một đường cao của tam giác ABE
Mà H = HE ∩ AD
Do đó H là giao của hai đường cao trong tam giác ABE
Nên H là giao của ba đường cao trong tam giác ABE (ba đường cao của một tam giác đồng quy tại một điểm)
Vậy H là trực tâm của tam giác ABE
Suy ra BH ⊥ AE nên đáp án A đúng, đáp án B sai
+ Vì tia AD và tia AE đều nằm trong góc BAC, mà nên AD không thể vuông góc với AE, do đó đáp án C sai.
+ Vì BH ⊥ AE mà AE ∩ AD = A nên BH không thể vuông góc với AD nên đáp án D sai.
Chọn đáp án A
Bài 10: Cho tam giác ABC có góc = 45°, độ dài đường cao AH bằng 12cm và diện tích bằng 120cm2. Tính độ dài BH.
A. 8cm
B. 12cm
C. 15cm
D. 17cm
Lời giải:
Chọn đáp án A
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 7 có đáp án chi tiết hay khác:
- Lý thuyết Tính chất đường trung trực của một đoạn thẳng
- Bài tập Tính chất đường trung trực của một đoạn thẳng
- Lý thuyết Tính chất ba đường trung trực của tam giác
- Bài tập Tính chất ba đường trung trực của tam giác
- Tổng hợp Lý thuyết & Trắc nghiệm Chương 3 Hình Học 7
- Tổng hợp Trắc nghiệm Chương 2 Đại Số 7
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều