HĐ3 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

HĐ3 trang 73 Toán 9 Tập 2: Cho tam giác ABC vuông tại đỉnh A (H.9.15). Gọi N, P lần lượt là trung điểm của các cạnh AB và AC.

HĐ3 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Vẽ hai đường trung trực a, b của các cạnh AB, AC, cắt nhau tại M.

b) Hãy giải thích vì sao MN, MP là các đường trung bình của tam giác ABC.

c) Hãy giải thích vì sao M là trung điểm của BC, từ đó suy ra đường tròn ngoại tiếp của tam giác ABC có tâm M và bán kính MB=MC=BC2.

Lời giải:

a) Vẽ đường thẳng a vuông góc với AB tại N và vẽ đường thẳng b vuông góc với AC tại P, ta được hai đường trung trực a, b của các cạnh AB, AC. Hai đường thẳng a và b cắt nhau tại M.

b) Vì ∆ABC vuông tại A nên AB ⊥ AC. (1)

Vì a là đường trung trực của AB nên a ⊥ AB hay MN ⊥ AB. (2)

Vì b là đường trung trực của AC nên b ⊥ AC hay MP ⊥ AC. (3)

Từ (1) và (2) suy ra MN // AC.

Từ (1) và (3) suy ra MP // AB.

Xét ∆ABC có:

⦁ N là trung điểm của AB và MN // AC nên MN là đường trung bình của tam giác.

⦁ P là trung điểm của AC và MP // AB nên MP là đường trung bình của tam giác.

c) Vì MN là đường trung bình của tam giác ABC nên M là trung điểm của BC.

Suy ra MB=MC=BC2.

Lại có M thuộc đường trung trực của AB nên MA = MB.

Do đó MA=MB=MC=BC2.

Vậy đường tròn ngoại tiếp của tam giác ABC có tâm M là bán kính MB=MC=BC2.

Lời giải bài tập Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Kết nối tri thức khác