Bài 9.41 trang 92 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9
Bài 9.41 trang 92 Toán 9 Tập 2: Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.
Lời giải:
Vì tam giác ABC nội tiếp đường tròn (O).
Mà M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB nên OM, ON, OP là ba đường trung trực của tam giác ABC.
Do đó OM ⊥ BC, ON ⊥ CA, OP ⊥ AB.
Vì ∆OAN vuông tại N nên tam giác nội tiếp đường tròn có đường kính OA. Do đó O, A, N nằm trên đường tròn đường kính OA.
Vì ∆OAP vuông tại P nên tam giác nội tiếp đường tròn đường kính OA. Do đó O, A, P nằm trên đường tròn đường kính OA.
Suy ra bốn điểm A, N, O, P nằm trên đường tròn đường kính OA.
Vì vậy, tứ giác ANOP nội tiếp đường tròn đường kính OA.
Chứng minh tương tự, ta có BPOM nội tiếp đường tròn đường kính OB, CMON nội tiếp đường tròn đường kính OC.
Vậy ANOP, BPOM, CMON là các tứ giác nội tiếp.
Lời giải bài tập Toán 9 Bài tập cuối chương 9 hay, chi tiết khác:
Bài 9.37 trang 92 Toán 9 Tập 2: Khẳng định nào sau đây là đúng? ....
Bài 9.39 trang 92 Toán 9 Tập 2: Đa giác nào dưới đây không nội tiếp một đường tròn? ....
Bài 9.40 trang 92 Toán 9 Tập 2: Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H ....
Bài 9.43 trang 92 Toán 9 Tập 2: a) Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D ....
Bài 9.44 trang 92 Toán 9 Tập 2: Bạn Lan muốn cắt hình ngôi sao có dạng như Hình 9.62 ....
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT