Bài 6.26 trang 24 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9
Bài 6.26 trang 24 Toán 9 Tập 2: Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a(x – x1)(x – x2).
Áp dụng: Phân tích các đa thức sau thành nhân tử:
a) x2 + 11x + 18;
b) 3x2 + 5x – 2.
Lời giải:
⦁ Phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 nên theo định lí Viète, ta có:
và
Suy ra b = –a(x1 + x2) và c = ax1x2.
Do đó:
ax2 + bx + c = ax2 – a(x1 + x2)x + ax1x2
= ax2 – ax1x – ax2x + ax1x2
= ax(x – x1) – ax2(x – x1)
= a(x – x1)(x – x2).
Vậy nếu phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử là: ax2 + bx + c = a(x – x1)(x – x2).
⦁ Áp dụng: Phân tích các đa thức thành nhân tử:
a) x2 + 11x + 18.
Phương trình x2 + 11x + 18 = 0 có ∆ = 112 – 4.1.18 = 49 > 0 và
Do đó phương trình có hai nghiệm phân biệt là:
Vậy đa thức x2 + 11x + 18 phân tích được thành nhân tử như sau:
x2 + 11x + 18 = (x + 2)(x + 9).
b) 3x2 + 5x – 2.
Phương trình 3x2 + 5x – 2 = 0 có ∆ = 52 – 4.3.(–2) = 49 > 0 và
Do đó phương trình có hai nghiệm phân biệt là:
Vậy đa thức 3x2 + 5x – 2 phân tích được thành nhân tử như sau:
Lời giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng hay, chi tiết khác:
HĐ1 trang 21 Toán 9 Tập 2: Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) ....
HĐ2 trang 21 Toán 9 Tập 2: Từ kết quả HĐ1, hãy tính x1 + x2 và x1x2 ....
HĐ3 trang 22 Toán 9 Tập 2: Cho phương trình 2x2 – 7x + 5 = 0 ....
HĐ4 trang 22 Toán 9 Tập 2: Cho phương trình 3x2 + 5x + 2 = 0 ....
Luyện tập 2 trang 23 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau: ....
HĐ5 trang 23 Toán 9 Tập 2: Giả sử hai số có tổng S = 5 và tích P = 6 ....
Vận dụng trang 24 Toán 9 Tập 2: Giải bài toán trong tình huống mở đầu ....
Bài 6.24 trang 24 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau: ....
Bài 6.25 trang 24 Toán 9 Tập 2: Tìm hai số u và v, biết: ....
Bài 6.27 trang 24 Toán 9 Tập 2: Một bể bơi hình chữ nhật có diện tích 300 m2 và chu vi là 74 m ....
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT