Bài 5 trang 74 Toán 9 Tập 2 Cánh diều

Bài 5 trang 74 Toán 9 Tập 2: Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:

a) DB ⊥ AB và CD ⊥ AC;

b) Tứ giác BHCD là hình bình hành;

c) AC2 + BH2 = 4R2;

d) Ba điểm H, M, D thẳng hàng và AH = 2OM.

Lời giải:

Bài 5 trang 74 Toán 9 Tập 2 Cánh diều | Giải Toán 9

a) Vì góc ABD, góc ACD đều là các góc nội tiếp chắn nửa đường tròn (O) (do AD là đường kính của (O)) nên ABD^=ACD^=90°.

Do đó DB ⊥ AB và CD ⊥ AC.

b) Vì H là trực tâm của ∆ABC nên BH ⊥ AC và CH ⊥ AB.

Lại có CD ⊥ AC và DB ⊥ AB (câu a) nên BH // CD và CH // BD.

Xét tứ giác BHCD có BH // CD và CH // BD nên BHCD là hình bình hành.

c) Vì BHCD là hình bình hành nên BH = CD.

Xét ∆ACD vuông tại C, theo định lí Pythagore, ta có:

AD2 = AC2 + CD2

Suy ra (2R)2 = AC2 + BH2

Hay AC2 + BH2 = 4R2.

d) Vì BHCD là hình bình hành nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm của BC nên M cũng là trung điểm của HD, do đó ba điểm H, M, D thẳng hàng.

Lại có AD là đường kính của đường tròn (O) nên O là trung điểm của AD.

Xét ∆AHD có O, M lần lượt là trung điểm của AB, HD nên OM là đường trung bình của tam giác,

Do đó OM=12AH hay AH = 2OM.

Lời giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác