Bài 9.14 trang 92 Toán 8 Tập 2 | Kết nối tri thức Giải Toán 8

Bài 9.14 trang 92 Toán 8 Tập 2: Cho các điểm A, B, C, D, E, F như Hình 9.29. Biết rằng DE // AB, EF // BC, DE = 4 cm, AB = 6 cm. Chứng minh rằng ΔAEF ∽ ΔECD và tính tỉ số đồng dạng.

Bài 9.14 trang 92 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

- Có EF // BC. Suy ra  AEF^=ACD^ (2 góc đồng vị). (1)

- Có EF // BD (vì EF // BC) và DE // FB (vì ED // AB).

Suy ra EFBD là hình bình hành. Suy ra EFB^=EDB^ .

EFB^+AFE^=180°;  EDB^+EDC^=180°  (kề bù).

Do đó, AFE^=EDC^ . (2)

Từ (1) và (2) suy ra ΔAEF ∽ ΔECD (g.g).

Vì EFBD là hình bình hành nên BF = ED = 4 cm.

Mà AF + BF = AB nên AF = AB – BF = 6 – 4 = 2 cm.

Khi đó, AFED=24=12 .

Vậy ΔAEF ∽ ΔECD với tỉ số đồng dạng là 12 .

Lời giải bài tập Toán 8 Luyện tập chung trang 91, 92 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác