Bài 3.45 trang 75 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bài 3.45 trang 75 Toán 8 Tập 1: Cho tam giác ABC cân tại A; M là một điểm thuộc đường thẳng BC, B ở giữa M và C. Gọi E, K lần lượt là chân đường vuông góc hạ từ M và từ B xuống AC, còn N, D lần lượt là chân đường vuông góc hạ từ B xuống MEvà từ M xuống AB (H.3.61).

Bài 3.45 trang 75 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Chứng minh rằng:

a) Tứ giác BKEN là hình chữ nhật.

b) BK bằng hiệu khoảng cách từ M đến AC và đến AB (dù M thay đổi trên đường thẳng BC miễn là B nằm giữa M và C) tức là BK = ME – MD.

Lời giải:

a) Vì ME ⊥ AC; BK ⊥ AC; BN ⊥ ME nên NEK^=90°; BKE^=90°; BNE^=90° .

Suy ra NBK^=360°NEK^BKE^BNE^

=360°90°90°90°=90°.

Tứ giác BKEN có NEK^=90°; BKE^=90°; BNE^=90° ; NBK^=90° .

Do đó, tứ giác BKEN là hình chữ nhật.

b) Khoảng cách từ M đến AC và AB lần lượt là ME và MD.

Tứ giác BKEN là hình chữ nhật nên NE = BK (1)

Ta có BN ⊥ ME; CE ⊥ ME nên BN // EC.

Suy ra MBN^=BCA^ (hai góc đồng vị)

ABC^=BCA^ (vì ∆ABC cân tại A); ABC^=MBD^ (hai góc đối đỉnh)

Do đó MBN^=MBD^ .

Xét ∆MBN và ∆MBD có:

MNB^=D^=90°

Cạnh BM chung

MBN^=MBD^ (chứng minh trên)

Do đó ∆MBN = ∆MBD (cạnh huyền – góc nhọn)

Suy ra MN = MD (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: ME = MN + NE = MD + BK.

Do đó BK = NE = ME – BD.

Lời giải bài tập Toán 8 Bài tập cuối chương 3 hay, chi tiết khác:

Các bài học để học tốt Toán 8 Bài tập cuối chương 3:

Xem thêm lời giải bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác