Bài 2 trang 20 Toán 12 Tập 1 Cánh diều

Bài 2 trang 20 Toán 12 Tập 1: Tìm giá trị lớn nhất của mỗi hàm số sau:

a) f(x) = 41 + x2;

b) f(x) = x - 3x trên nửa khoảng (0; 3].

Lời giải:

a) Ta có f'(x) = -8x(1 + x2)2 . Ta có f'(x) = 0 khi x = 0.

Ngoài ra limxf(x) =0.

Bảng biến thiên của hàm số như sau:

Bài 2 trang 20 Toán 12 Tập 1 Cánh diều | Giải Toán 12

Căn cứ vào bảng biến thiên, ta thấy maxf(x) = 4 tại x = 0.

b) Xét hàm số f(x) = x - 3x  với x ∈ (0; 3].

Ta có f'(x) = 1 + 3x2 . Khi đó, trên nửa khoảng (0; 3], f'(x) > 0.

Ngoài ra limx0+fx=, limx3fx=f3=2.

Bảng biến thiên của hàm số như sau:

Bài 2 trang 20 Toán 12 Tập 1 Cánh diều | Giải Toán 12

Căn cứ vào bảng biến thiên, ta thấy maxf(x) = 2 tại x = 3.

Lời giải bài tập Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác