Bài 8.2 trang 71 Toán 11 Tập 2 - Kết nối tri thức

Bài 8.2 trang 71 Toán 11 Tập 2: Gieo hai con xúc xắc cân đối, đồng chất. Xét các biến cố sau:

E: “Số chấm xuất hiện trên hai con xúc xắc đều là số chẵn”;

F: “Số chấm xuất hiện trên hai con xúc xắc khác tính chẵn lẻ”;

K: “Tích số chấm xuất hiện trên hai con xúc xắc là số chẵn”.

Chứng minh K là biến cố hợp của E và F.

Lời giải:

Không gian mẫu: Ω = {(x; y) | 1 ≤ x ≤ 6; 1 ≤ y ≤ 6}.

Ta có:

E = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6)}.

F = {(1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.

Suy ra: E ∪ F = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6); (1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.

Mặt khác:

K = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6); (1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}

Vậy K = E ∪ F (điều cần phải chứng minh).

Ngoài ra, ta có thể chứng minh như sau:

Nếu E hoặc F xảy ra thì K xảy ra. Ngược lại, nếu K xảy ra thì trong số chấm xuất hiện trên hai con xúc xắc phải có ít nhất một số chẵn: nếu cả hai số đều chẵn thì E xảy ra; nếu một số chẵn, một số lẻ thì F xảy ra. Nghĩa là nếu K xảy ra thì hoặc E xảy ra hoặc F xảy ra. Vậy K là biến cố hợp của E và F.

Lời giải bài tập Toán 11 Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác