Bài 5.25 trang 90 Toán 10 Tập 1 - Kết nối tri thức
Bài 5.25 trang 90 Toán 10 Tập 1: Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông ở mỗi tỉnh thuộc Đồng bằng Bắc Bộ?
Đồng bằng sông Hồng: 187 34 35 46 54 57 37 39 23 57 27.
Đồng bằng sông Cửu Long: 33 34 33 29 24 39 42 24 23 19 24 15 26.
a) Tính số trung bình, trung vị, các tứ phân vị, mốt, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn cho mỗi mẫu số liệu trên.
b) Tại sao số trung bình của hai mẫu số liệu có sự sai khác nhiều trong khi trung vị thì không?
c) Tại sao khoảng biến thiên và độ lệch chuẩn của hai mẫu số liệu khác nhau nhiều trong khi khoảng tứ phân vị thì không?
Lời giải:
a) +) Mẫu số liệu đồng bằng sông Hồng:
Số trung bình của mẫu số liệu:
Sắp xếp số liệu trên theo thứ tự không giảm ta được:
23; 27; 34; 35; 37; 39; 46; 54; 57; 57; 187.
Vì n = 11 là số lẻ nên trung bị Q2 = 39.
Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q1 = 34.
Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = 57.
Khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 57 – 34 = 23.
Ta có giá trị lớn nhất của số liệu là 187 và giá trị nhỏ nhất là 23. Khi đó khoảng biến thiên là: R = 187 – 23 = 164.
Theo quan sát số liệu, ta thấy giá trị 57 có tần số suất hiện nhiều nhất nên mốt là 57.
+) Mẫu số liệu đồng bằng sông Cửu Long:
Số trung bình của mẫu số liệu:
Sắp xếp số liệu trên theo thứ tự không giảm ta được:
15; 19; 23; 24; 24; 24; 26; 29; 33; 33; 34; 39; 42.
Vì n = 13 là số lẻ nên trung vị Q2 = 26.
Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q1 = (23 + 24):2 = 23,5.
Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = (33 + 34):2 = 33,5.
Khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 33,5 – 23,5 = 10.
Ta có giá trị lớn nhất của số liệu là 42 và giá trị nhỏ nhất là 15. Khi đó khoảng biến thiên là: R = 42 – 15 = 27.
Theo quan sát số liệu, ta thấy giá trị 24 có tần số suất hiện nhiều nhất nên mốt là 24.
b) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này làm ảnh hưởng đến giá trị trung bình của mẫu số liệu một nên có sự sai khác nhiều hai số trung bình của hai mẫu số liệu còn trung vị thì không.
c) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này là giá trị lớn nhất nên ảnh hưởng đến khoảng biến thiên của mẫu số liệu một. Trong khi đó, các giá trị của mẫu số liệu hai không có giá trị nào bất thường. Do đó khoảng biến thiên của hai mẫu số liệu có sự chênh lệch nhau.
Độ phân tán của mẫu số liệu một lớn hơn nhiều so với độ phân tán của mẫu số liệu hai. Do đó độ lệch chuẩn của hai số liệu sau có sự khác biệt.
Khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa mà các giá trị chính giữa của hai mẫu số liệu không quá chênh lệch. Do đó khoảng tứ phân vị của hai mẫu số liệu không quá khác biệt.
Lời giải bài tập Toán 10 Bài tập cuối chương 5 hay, chi tiết khác:
Các bài học để học tốt Toán 10 Bài tập cuối chương 5:
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT