Bài 6 trang 125 Toán 10 Tập 1 Chân trời sáng tạo
Bài 6 trang 125 Toán lớp 10 Tập 1: Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy A và B được cho ở bảng sau (đơn vị: triệu đồng):
a) Hãy tìm số trung bình, mốt, tứ phân vị và độ lệch chuẩn của hai mẫu số liệu lấy từ nhà máy A và nhà máy B.
b) Hãy tìm các giá trị ngoại lệ trong mỗi mẫu số liệu trên. Công nhân nhà máy nào có mức lương cao hơn? Tại sao?
Lời giải:
a)
* Nhà máy A:
+ Số trung bình mức lương hàng tháng: .
+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
4; 4; 4; 5; 5; 5; 6; 47.
Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.
Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.
Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.
+ Phương sai mẫu:
(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.
+ Độ lệch chuẩn: SA = .
* Nhà máy B:
+ Số trung bình mức lương hàng tháng: .
+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.
Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.
+ Phương sai mẫu:
(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.
+ Độ lệch chuẩn: SB = .
b)
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.
Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy B là: ∆QB = 9,5 – 8,5 = 1.
Ta có: Q3B + 1,5∆QB = 9,5 + 1,5 . 1 = 11 và Q1B – 1,5∆QB = 8,5 – 1,5 . 1 = 7.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy B là 2.
+ Quan sát các số liệu tính được ở câu a), ta thấy
- Số trung bình mức lương hàng tháng của công nhân ở nhà máy A cao hơn nhà máy B.
- Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở nhà máy A cao hơn nhà máy B nên mức lương hằng tháng của công nhân nhà máy A có độ phân tán cao hơn nhà máy B, do đó mức lương của công nhân nhà máy B ổn định hơn nhà máy A.
- Mức lương xuất hiện nhiều nhất trong mẫu A là 4 và 5 triệu đồng, nhà máy B là 9 triệu đồng.
Do đó, ta có thể khẳng định công nhân nhà máy B có mức lương cao hơn (đều và ổn định hơn).
Lời giải bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu hay, chi tiết khác:
Các bài học để học tốt Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu:
Giải SBT Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Lý thuyết Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Trắc nghiệm Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Toán 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Toán 10 Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST