Số đo tính theo độ của ba góc A, B, C trong tứ giác ABCD lần lượt là x, 2x, 3(x ‒ 10)

Bài 18 trang 42 SBT Toán 9 Tập 1: Số đo tính theo độ của ba góc A, B, C trong tứ giác ABCD lần lượt là x, 2x, 3(x ‒ 10) với x > 10.

a) Viết một bất phương trình bậc nhất ẩn x.

b) Giải bất phương trình bậc nhất một ẩn ở câu a.

c) Các góc có số đo là 2x và 3(x ‒ 10) có bằng nhau được hay không? Vì sao?

Lời giải:

a) Do ABCD là tứ giác nên tổng số đo bốn góc của tứ giác bằng 360°, do đó tổng số đo ba góc A, B, C của tứ giác luôn nhỏ hơn 360°.

Do số đo của ba góc A, B, C trong tứ giác ABCD lần lượt là x, 2x, 3(x ‒ 10) nên với x > 10, ta có bất phương trình:

x + 2x + 3(x ‒ 10) < 360

3x + 3x ‒ 30 – 360 < 0

6x ‒ 390 < 0.

Vậy ta có bất phương trình bậc nhất ẩn x là 6x ‒ 390 < 0 với x > 10.

b) Giải bất phương trình:

6x ‒ 390 < 0

6x < 390

x < 65.

Kết hợp với x > 10, ta có 10 < x < 65.

Vậy bất phương trình có nghiệm 10 < x < 65.

c) Giả sử 2x và 3(x ‒ 10) bằng nhau.

Khi đó, ta có phương trình: 2x = 3(x ‒ 10).

Giải phương trình:

2x = 3(x ‒ 10)

2x = 3x ‒ 30

‒x = ‒30

x = 30 (thỏa mãn 10 < x < 65).

Vậy các góc có số đo là 2x và 3(x ‒ 10) có thể bằng nhau.

Lời giải SBT Toán 9 Bài 2: Bất phương trình bậc nhất một ẩn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác