Hai đường trung tuyến BM CN của tam giác ABC cân tại A cắt nhau tại G

Bài 3.21 trang 39 sách bài tập Toán 8 Tập 1: Hai đường trung tuyến BM, CN của tam giác ABC cân tại A cắt nhau tại G. Gọi H, K lần lượt là điểm sao cho trung điểm của GH là M, trung điểm của GK là N. Chứng minh tứ giác BCHK là hình chữ nhật.

Lời giải:

Hai đường trung tuyến BM CN của tam giác ABC cân tại A cắt nhau tại G

Vì BM, CN là trung tuyến của ∆ABC nên M, N lần lượt là trung điểm của AC, AB.

Do M là trung điểm của AC và của GH nên AGCH là hình bình hành

Từ đó HC = AG và HC // AG. (1)

Do N là trung điểm của AB và của GK nên AGBK là hình bình hành

Suy ra KB = AG và KB // AG. (2)

Từ (1) và (2) suy ra BK = CH và BK // CH.

Tứ giác BCHK có hai cạnh đối BK, CH bằng nhau và song song nên là một hình bình hành.

Vì tam giác ABC cân tại A nên trung tuyến AG là đường cao tức AG ⊥ BC hay KB ⊥ BC, suy ra BCHK là hình chữ nhật.

Lời giải SBT Toán 8 Bài 13: Hình chữ nhật hay khác:

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác