Tìm điểm cố định mà mỗi đường thẳng d’ y = (m – 2)x + 3
Bài 17 trang 19 sách bài tập Toán 8 Tập 2: Tìm điểm cố định mà mỗi đường thẳng d’: y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Lời giải:
Giả sử điểm cố định của đồ thị hàm số y = (m – 2)x + 3 là I(x0; y0).
Thay x = x0 và y = y0 vào y = (m – 2)x + 3, ta được:
y0 = (m – 2)x0 + 3
mx0 – 2x0 + 3 – y0 = 0
mx0 – (y0 + 2x0 – 3) = 0 (1)
Để (1) luôn đúng với mọi giá trị của m thì .
Vậy đồ thị hàm số y = (m – 2)x + 3 luôn đi qua điểm cố định I(0; 3).
Lời giải SBT Toán 8 Bài tập cuối chương 5 hay khác:
Xem thêm giải sách bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
Giải bài tập lớp 8 Chân trời sáng tạo khác
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST