Cho tam giác ABC có cạnh BC = 2x (dm), đường cao AH = x (dm) với x > 0

Bài 26 trang 18 SBT Toán 8 Tập 1: Cho tam giác ABC có cạnh BC = 2x (dm), đường cao AH = x (dm) với x > 0 và hình vuông MNPQ có cạnh MN = y (dm) với y > 0 (Hình 4).

Cho tam giác ABC có cạnh BC = 2x (dm), đường cao AH = x (dm) với x > 0

a) Viết công thức tính tổng diện tích của các tam giác AMN, BMQ, CNPdưới dạng tích.

b) Tính tổng diện tích của các tam giác AMN, BMQ, CNP, biết x ‒ y = 2x + y = 10.

Lời giải:

a) Diện tích của tam giác ABC là:

12.AH.BC=12.x.2x=x2 (dm2)

Diện tích hình vuông MNPQ là:

MN2 = y2 (dm2)

Vì vậy, tổng diện tích của các tam giác AMN, BMQ, CNP là:

S = x2 ‒ y2 (dm2)

b) Từ câu a, ta

S = x2 ‒ y2 = (x ‒ y)(x + y)

Thay x – y = 2 và x + y = 10 vào S ta được:

S = 2.10 = 20 (dm2).

Vậy tổng diện tích của các tam giác AMN, BMQ, CNP là20 dm2.

Lời giải SBT Toán 8 Bài 4: Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Cánh diều khác