Tìm số tự nhiên a để trong 10 số tự nhiên sau: a + 1; a + 2; a + 3; …; a + 9; a + 10

Bài 98 trang 30 sách bài tập Toán lớp 6 Tập 1: Tìm số tự nhiên a để trong 10 số tự nhiên sau: a + 1; a + 2; a + 3; …; a + 9; a + 10 có nhiều số nguyên tố nhất.

Lời giải:

+) a = 0

10 số tự nhiên đó lần lượt là: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10.

Trong đó có 4 số nguyên tố: 2; 3; 5; 7.

+) a = 1

10 số tự nhiên đó lần lượt là: 2; 3; 4; 5; 6; 7; 8; 9; 10; 11.

Trong đó có 5 số nguyên tố là: 2; 3; 5; 7; 11.

+) a > 1

- a chẵn thì a + 2; a + 4; a + 6; a + 8; a + 10 là các số chẵn nên chúng là hợp số.

Còn các số a + 1; a + 3; a + 5; a + 7; a + 9 là các số lẻ mà trong 3 số lẻ liên tiếp luôn tồn tại một số chia hết cho 3. Do đó có ít nhất một số là hợp số trong 5 số này.

Suy ra có ít nhất 5 số là hợp số trong dãy các số trên nghĩa là số số nguyên tố < 5 số.

- a chẵn thì a + 1; a + 3; a + 5; a + 7; a + 9 là các số chẵn nên chúng là hợp số.

Còn các số a + 2; a + 4; a + 6; a + 8; a + 10 là các số lẻ mà trong 3 số lẻ liên tiếp luôn tồn tại một số chia hết cho 3. Do đó có ít nhất một số là hợp số trong 5 số này.

Suy ra có ít nhất 5 số là hợp số trong dãy các số trên nghĩa là số số nguyên tố < 5 số.

Vậy a = 1 để 10 số tự nhiên có nhiều số nguyên tố nhất.

Xem thêm các bài giải sách bài tập Toán lớp 6 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 6 hay khác:


Giải bài tập lớp 6 Cánh diều khác