Cho a, b là hai số nguyên tố cùng nhau. Chứng tỏ rằng 5a + 2b và 7a + 3b cũng là hai số nguyên tố cùng nhau

Bài 116 trang 34 sách bài tập Toán lớp 6 Tập 1: Cho a, b là hai số nguyên tố cùng nhau. Chứng tỏ rằng 5a + 2b và 7a + 3b cũng là hai số nguyên tố cùng nhau.

Lời giải:

Gọi d = ƯCLN(5a + 2b, 7a + 3b).

Suy ra 5a + 2b, 7a + 3b chia hết cho d.

Do đó 7(5a + 2b), 5(7a + 3b) cũng chia hết cho d.

Khi đó, ta có: 5(7a + 3b) - 7(5a + 2b) = 35a + 15b – (35a + 14b) = b chia hết cho d.

Ta lại có 3(5a + 2b), 2(7a + 3b) cũng chia hết cho d.

Khi đó, ta có: 3(5a + 2b) - 2(7a + 3b) = 15a + 6b – (14a + 6b) = a cũng chia hết cho d.

Mà a và b nguyên tố cùng nhau nên d = 1.

Vậy 5a + 2b và 7a + 3b là hai số nguyên tố cùng nhau.

Xem thêm các bài giải sách bài tập Toán lớp 6 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 6 hay khác:


Giải bài tập lớp 6 Cánh diều khác