Trong kì thi học sinh giỏi quốc gia tỉnh X có hai đội tuyển môn Toán và môn Ngữ văn

Bài 6.7 trang 44 SBT Toán 12 Tập 2: Trong kì thi học sinh giỏi quốc gia, tỉnh X có hai đội tuyển môn Toán và môn Ngữ văn tham dự. Đội tuyển Toán có 10 em, đội tuyển Ngữ văn có 8 em. Xác suất có giải của mỗi em trong đội tuyển Toán là 0,8; trong đội tuyển Ngữ văn là 0,7. Sau giải lấy ngẫu nhiên một em của tỉnh X trong số các em thi học sinh giỏi môn Toán và môn Ngữ văn. Tính xác suất để đó là một em được giải.

Lời giải:

Gọi A là biến cố: “Em học sinh đó thuộc đội tuyển Toán”.

A¯  là biến cố: “Em học sinh đó thuộc đội tuyển Ngữ văn”.

        B là biến cố: “Em đó được giải”.

Số phần tử không gian mẫu: n(Ω) = 10 + 8 = 18.

P(A) = 1018, P(B | A) = 0,8.

P(A¯) = 818, P(B | A¯ ) = 0,7.

Theo công thức xác suất toàn phần, ta có:

P(B) = P(A).P(B | A) + P(A¯).P(B |A¯)

          = 1018 .0,8 + 818.0,7

          = 3445 ≈ 0,7556.

Lời giải Sách bài tập Toán lớp 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác