Với mẫu số liệu ghép nhóm thu được ở Bài 4, xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm đó

Bài 5 trang 10 SBT Toán 11 Tập 2: Với mẫu số liệu ghép nhóm thu được ở Bài 4, xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm đó (làm tròn các kết quả đến hàng phần mười).

Lời giải:

Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy của mẫu số liệu được cho như sau:

Nhóm

Giá trị đại diện

Tần số

Tần số tích lũy

[7,0 ; 7,2)

7,1

7

7

[7,2 ; 7,4)

7,3

6

13

[7,4 ; 7,6)

7,5

7

20

[7,6 ; 7,8)

7,7

5

25

[7,8 ; 8,0]

7,9

3

28

 

 

n = 28

 

 

⦁ Số trung bình cộng là:

x¯=77,1+67,3+77,5+57,7+37,9287,4.

⦁ Ta có: n2=282=14,n4=7,3n4=21.

Vì 13 < 24 < 20 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 14.

Xét nhóm 3 là nhóm [7,4 ; 7,6) có r = 7,4, d  = 0,2, n3 = 7 và nhóm 2 là nhóm [7,2 ; 7,4) có cf2 = 13. Suy ra trung vị là:

Me=7,4+141370,27,4.

Tứ phân vị thứ 2 là: Q2 = Me 7,4.

Vì 0 < 7 ≤ 7 nên nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7.

Xét nhóm 1 là nhóm [7,0; 7,2) có s = 7,0, h  = 0,2, n1 = 7 và cf0 = 0.

Suy ra tứ phân vị thứ nhất là:

Q1=7,0+7070,27,2.

Vì 20 < 21 < 25 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21. Xét nhóm 4 là nhóm [7,6 ; 7,8) có t = 7,6, l  = 0,2, n4 = 5 và nhóm 3 là nhóm [7,4 ; 7,6) có cf3 = 20. Suy ra tứ phân vị thứ ba là:

Q3=7,6+212050,27,6.

⦁ Ta thấy nhóm 1 và nhóm 3 tương ứng với nửa khoảng [7,0 ; 7,2) và [7,4 ; 7,6) là nhóm có tần số lớn nhất nên ta có hai mốt là:

Nhóm 1 ứng với nửa khoảng [7,0 ; 7,2) là nhóm có tần số lớn nhất với u = 7,0, g = 0,2, n1 = 7; n0 = 0 và nhóm 2 là nhóm [7,2; 7,4) có n2 = 6. Suy ra mốt thứ nhất là:

MO=7,0+702.7060,27,2;

Nhóm 3 ứng với nửa khoảng [7,4 ; 7,6) là nhóm có tần số lớn nhất với u = 7,4, g = 0,2, n3 = 7; và nhóm 2 là nhóm [7,2; 7,4) có n2 = 6 và nhóm 4 là nhóm [7,6; 7,8) có n4 = 5. Suy ra mốt thứ hai là:

MO=7,4+762.7650,27,5.

Lời giải SBT Toán 11 Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác