Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ
Bài 1 trang 129 SBT Toán 10 Tập 1: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:
a) 90; 56; 50; 45; 46; 48; 52; 43.
b) 19; 11; 1; 16; 19; 12; 14; 10; 11.
c) 6,7; 6,2; 9,7; 6,3; 6,8; 6,1; 6,2.
d) 0,79; 0,68; 0,35; 0,38; 0,05; 0,35.
Lời giải:
a) Ta có: n = 8.
Số trung bình cộng:
Phương sai:
= 202,6875.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
43; 45; 46; 48; 50; 52; 56; 90
Khi đó, khoảng biến thiên R = 90 – 43 = 47.
Vì n = 8 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (48 + 50) : 2 = 49.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 43; 45; 46; 48.
Vậy Q1 = (45 + 46) : 2 = 45,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 50; 52; 56; 90.
Vậy Q3 = (52 + 56) : 2 = 54.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 54 – 45,5 = 8,5.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 54 + 1,5.8,5 = 66,75
Hoặc x < Q1 − 1,5∆Q = 45,5 − 1,5.8,5 = 32,75
Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 90.
b) Ta có: n = 9.
Số trung bình cộng:
Phương sai:
= 26,91.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
1; 10; 11; 11; 12; 14; 16; 19; 19
Khi đó, khoảng biến thiên R = 19 – 1 = 18.
Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 12.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 1; 10; 11; 11.
Vậy Q1 = (10 + 11) : 2 = 10,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 14; 16; 19; 19.
Vậy Q3 = (16 + 19) : 2 = 17,5.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 17,5 – 10,5 = 7.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 17,5 + 1,5.7 = 28
Hoặc x < Q1 − 1,5∆Q = 10,5 − 1,5.7 = 0
Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.
c) Ta có: n = 7.
Số trung bình cộng:
Phương sai:
= 1,41.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
6,1; 6,2; 6,2; 6,3; 6,7; 6,8; 9,7
Khi đó, khoảng biến thiên R = 9,7 – 6,1 = 3,6.
Vì n = 7 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6,3.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 6,1; 6,2; 6,2.
Vậy Q1 = 6,2.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 6,7; 6,8; 9,7.
Vậy Q3 = 6,8.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 6,8 – 6,2 = 0,6.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 6,8 + 1,5.0,6 = 7,7
Hoặc x < Q1 − 1,5∆Q = 6,2 − 1,5.0,6 = 5,3
Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 9,7.
d) Ta có: n = 6.
Số trung bình cộng:
Phương sai:
= 0,059.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
0,05; 0,35; 0,35; 0,38; 0,68; 0,79
Khi đó, khoảng biến thiên R = 0,79 – 0,05 = 0,74.
Vì n = 6 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (0,35 + 0,38) : 2 = 0,365.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 0,05; 0,35; 0,35.
Vậy Q1 = 0,35.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 0,38; 0,68; 0,79.
Vậy Q3 = 0,68.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 0,68 – 0,35 = 0,33.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 0,68 + 1,5.0,33 = 1,175
Hoặc x < Q1 − 1,5∆Q = 0,35 − 1,5.0,33 = −0,145.
Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.
Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST