Sơ đồ cộng nêu trong sách giáo khoa chỉ dùng để cộng hai số một bit
Câu 4.6 trang 13 SBT Tin học 11: Sơ đồ cộng nêu trong sách giáo khoa chỉ dùng để cộng hai số một bit, thường được gọi là bộ nửa cộng (half adder), có hai đầu vào và hai đầu ra như Hình 4.2a. Ta kí hiệu bộ nửa cộng này là A. Nếu cộng hai số nhiều bit, thì ở mỗi hàng không chỉ cộng hai bit tương ứng của hai số hạng mà còn phải cộng cả bit nhớ ở hàng bên phải chuyển sang. Do vậy phải cần một bộ cộng ba đầu vào và hai đầu ra, thường được gọi là bộ cộng đầy đủ (full adder) như Hình 4.2c. Ta kí hiệu bộ nửa cộng này là B.
Hãy ghép một số bộ cộng kiểu A để thiết lập một bộ cộng kiểu B. Tìm trên Internet thông tin về bộ cộng đầy đủ.
Lời giải:
Cách tích hợp đơn giản nhất là: cộng hai bit x, y bằng một bộ cộng kiểu A để có bit kết quả và bit nhớ thứ nhất để chuyển sang bên trái. Sử dụng một bộ cộng kiểu A khác cộng bit kết quả với số nhớ chuyển từ hàng bên phải. Phép cộng này có thể phát sinh ra một số nhớ thứ hai. Số nhớ sang hàng bên trái chính là tổng của hai số nhớ thứ nhất và thứ hai của hai phép cộng trên. Như vậy, có thể dùng ba bộ cộng kiểu A để xây dựng bộ cộng kiểu B như trong Hình 4.3.
Như vậy, bộ cộng kiểu B có 3 đầu vào gồm 2 bit x, y và số nhớ từ hàng bên phải. Hai đầu ra là bit cùng hàng z của tổng và số nhớ chuyển sang hàng bên trái. Tuy nhiên, điều này chỉ đúng nếu tổng hai số nhớ thứ nhất và thứ hai chỉ gồm một bit (không phát sinh ra số nhớ nữa). Điều này có thể chứng minh như sau:
Nếu tổng hai số nhớ lại phát sinh ra số nhớ sang hàng bên trái thì hai số nhớ đó phải cùng bằng 1 vì chỉ có phép tính 1 + 1 = 10 mới phát sinh số nhớ. Nếu số nhớ thứ nhất là 1 thì lí luận tương tự, hai bit x và y cũng đều phải là 1. Khi đó số hạ xuống tổng là 0 vì
1+1=10.
Nếu số nhớ thứ hai cũng là 1 thì tương tự, số nhớ từ hàng bên phải phải là 1 và số hạ xuống tổng của phép tính x + y cũng phải là 1. Điều này mâu thuẫn vì ta vừa chứng tỏ nó bằng 0. Vậy không bao giờ cả hai số nhớ thứ nhất và thứ hai đều bằng 1 và kết quả cộng hai số nhớ này không bao giờ phát sinh thêm một số nhớ sang hàng bên trái tiếp theo nên có thể dùng một bộ cộng kiểu A nữa để cộng hai số nhớ.
Nhận xét rằng, nếu 2 bit p và q không đồng thời bằng 1 thì p + q = p v q. Vì vậy, hoàn toàn có thể thay bộ cộng kiểu A thứ ba này bằng một cổng lôgic OR như trong Hình 4.4.
Lời giải sách bài tập Tin học 11 Bài 4: Bên trong máy tính hay khác:
Câu 4.1 trang 11 SBT Tin học 11: Hay mở một máy tính để bàn, quan sát bằng mạch chính ....
Câu 4.2 trang 11 SBT Tin học 11: Máy tính để bàn không có phi, nhưng có bộ nguồn cấp điện ....
Câu 4.3 trang 12 SBT Tin học 11: Kí hiệu # là một trong 4 phép toán lôgic cộng, nhân ....
Câu 4.4 trang 12 SBT Tin học 11: Nhiều gia đình mắc bóng đèn để có thể bật ....
Câu 4.5 trang 12 SBT Tin học 11: Hoàn thành bảng các phép toán lôgic sau ....
Xem thêm các bài giải sách bài tập Tin học lớp 11 Kết nối tri thức hay, chi tiết khác:
SBT Tin học 11 Bài 6: Lưu trữ và chia sẻ tệp tin trên internet
SBT Tin học 11 Bài 7: Thực hành tìm kiếm thông tin trên Internet
SBT Tin học 11 Bài 8: Thực hành nâng cao sử dụng thư điện tử và mạng xã hội
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Tin học 11 Kết nối tri thức
- Giải Chuyên đề Tin học 11 Kết nối tri thức
- Giải SBT Tin học 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT