Bài 2.17 trang 61 Sách bài tập Hình học 12



Bài 2.17 trang 61 Sách bài tập Hình học 12: Cho mặt cầu tâm O bán kính r. Gọi (α) là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng (α) cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C)

a) Chứng minh các tổng AD2 + BC2 và AC2 + BD2 có giá trị không đổi.

b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất?

c) Tìm tập hợp các điểm H, hình chiếu của B trên CD khi CD chuyển động trên đường tròn (C).

Lời giải:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

a) Tam giác ADC vuông tại A nên AD2 = DC2 – AC2 (1)

Tam giác ABC vuông tại A nên BC2 = AC2 + AB2 (2)

Từ (1) và (2) ta suy ra AD2 + BC2 = DC2 + AB2 (3)

Ta lại có:

AC2 = DC2 – AD2 và BD2 = AD2 + AB2 (4)

DC2 = 4(r2 – h2), AB2 = 4h2 (5)

Từ (4) và (5) ta có:

AC2 + BD2 = DC2 + AB2 = 4(r2 – h2) + 4h2 = 4r2 (6)

Từ (3) và (6) ta có: AD2 + BC2 = AC2 + BD2 (không đổi)

b) Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Diện tích này lớn nhất khi AI // CD.

c) Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng (α).

Các bài giải sách bài tập Hình học 12 khác:


bai-2-mat-cau.jsp


Giải bài tập lớp 12 sách mới các môn học