Giải bài tập Toán lớp 7 Luyện tập trang 59-60
Lời giải:
Giả sử ΔABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB; AM ≤ AC.
- TH1 : Nếu M ≡ B hoặc M ≡ C (Kí hiệu đọc là trùng với) thì AM = AB = AC.
- TH2 : Nếu M nằm giữa B và C và M ≠ B; M ≠ C.
Kẻ AH ⊥ BC tại H
+ Nếu M ≡ H ⇒ AM ⊥ BC tại M hay AM là đường vuông góc từ A đến BC.
Mà AB, AC là các đường xiên từ A đến đường thẳng BC.
Theo định lí 1 : Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường thẳng vuông góc là đường ngắn nhất.
⇒ AM < AB và AM < AC.
+ Nếu M ≠ H giả sử M nằm giữa H và C ⇒ MH < CH.
Vì MH và CH lần lượt là hình chiếu của đường xiên MA và CA trên đường BC
Mà MH < CH ⇒ MA < CA (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
Chứng minh tương tự nếu M nằm giữa H và B
Vậy mọi vị trí của M trên cạnh đáy BC thì AM ≤ AB = AC.
Bài 11 trang 60 sgk Toán lớp 7 Tập 2 - Video giải tại 6:47): Một cách chứng minh khác của định lí 2:
Cho hình 13. Dùng quan hệ giữa góc và cạnh đối diện trong một tam giác để chứng minh rằng:
Nếu BC < BD thì AC < AD
Hướng dẫn:
a) Góc ACD là góc gì? Tại sao?
b) Trong tam giác ACD, cạnh nào lớn nhất, tại sao?
Lời giải:
a) Ta có BC < BD mà C, D nằm cùng phía so với B ⇒ C nằm giữa B và D.
b) Trong tam giác ACD có góc ACD là góc tù .
Mà AD là cạnh đối diện với góc ACD.
⇒ AD là cạnh lớn nhất trong tam giác ACD (cạnh đối diện với góc tù là cạnh lớn nhất trong tam giác).
nên AD > AC hay AC < AD
Vậy Nếu : BC < BD thì AC < AD.
Một tấm gỗ xẻ có hai cạnh song song. Chiều rộng của tấm gỗ là khoảng cách giữa hai cạnh đó.
Muốn đo chiều rộng của tấm gỗ, ta phải đặt thước như thế nào? Tại sao? Cách đặt thước như trong hình 15 có đúng không?
Lời giải:
Dựa vào hình 14 ta nhận thấy khoảng cách giữa hai đường thẳng song song là độ dài của đoạn thẳng có hai đầu nằm trên hai đường thẳng và vuông góc với cả hai đường thẳng đó.
Vì vậy muốn đo bề rộng của một tấm gỗ chính là xác định khoảng cách giữa hai đường thẳng song song ta phải đặt thước vuông góc với hai cạnh song song của tấm gỗ.
Cách đặt thước như trong hình 15 là sai.
Bài 13 trang 60 sgk Toán lớp 7 Tập 2 - Video giải tại 14:13) : Cho hình 16. Hãy chứng minh rằng:
a) BE < BC;
b) DE < BC.
Lời giải:
a) Ta có: BE, BC là hai đường xiên vẽ từ B đến đường AC.
BA ⏊ AC tại A nên A là hình chiếu của B trên AC
⇒ AE, AC lần lượt là hình chiếu của BE, BC trên AC.
Trong hình vẽ E nằm giữa A và C ⇒ AE < AC ⇒ BE < BC (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
b) Trong hình vẽ D nằm giữa A và B ⇒ AD < AB
Ta có: ED, EB là hai đường xiên vẽ từ E đến đường AB
EA ⏊ AB tại A nên A là hình chiếu của E trên AB.
⇒ AD, AB lần lượt là hình chiếu của ED, EB trên AB
Trong hình vẽ D nằm giữa A và B ⇒ AD < AB nên ED < EB hay DE < BE (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
Kết hợp với kết quả câu a suy ra DE < BE < BC ⇒ DE < BC.
Lấy điểm M trên đường thẳng QR sao cho PM = 4,5cm. Có mấy điểm M như vậy?
Điểm M có nằm trên cạnh QR hay không? Tại sao?
Lời giải:
* Vẽ hình:
- Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6cm.
+ Vẽ đoạn thẳng QR = 6cm.
+ Vẽ cung tròn tâm Q và cung tròn tâm R bán kính 5cm. Hai cung tròn này cắt nhau tại P.
+ Nối PQ và PR ta được tam giác cần vẽ.
- Vẽ điểm M : Vẽ cung tròn tâm P bán kính 4,5cm cắt QR (nếu có) tại M.
Vậy ta có thể vẽ được 2 điểm M trên đường thẳng QR để PM = 4.5cm
* Kẻ đường cao PH của ΔPQR
Xét hai tam giác vuông tại H: ΔPHQ và ΔPHR có
PH chung
PQ = PR ( = 5cm)
⇒ ΔPHQ = ΔPHR (cạnh huyền – cạnh góc vuông)
⇒ HQ = HR (Hai cạnh tương ứng)
Mà HQ + HR = QR = 6 cm
+ ΔPHR vuông tại H có PR 2 = PH 2 + HR 2 (định lí Py – ta – go)
⇒ PH 2 = PR 2 – HR 2 = 5 2 – 3 2 = 16 ⇒ PH = 4cm .
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.
Vậy chắc chắn có đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
+ Lại có : HM, HR lần lượt là hình chiếu của các đường xiên PM, PR trên đường thẳng QR.
Mà PM < PR ⇒ HM < HR = HQ (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
⇒ M nằm giữa H và Q hoặc H và R
⇒ M nằm trên cạnh QP và có hai điểm M như vậy.
Xem thêm Video Giải bài tập Toán lớp 7 hay và chi tiết khác:
- Bài 3: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác - Luyện tập trang 63-64)
- Luyện tập trang 63-64
- Bài 4: Tính chất ba đường trung tuyến của tam giác - Luyện tập trang 67)
- Luyện tập trang 67
- Bài 5: Tính chất tia phân giác của một góc - Luyện tập trang 70-71)
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều