Luyện tập - vận dụng 3 trang 27 Chuyên đề Toán 12 Cánh diều

Luyện tập - vận dụng 3 trang 27 Chuyên đề Toán 12: Một kho hàng có hai loại hàng hoá A và B. Người ta dùng hai loại xe tải để chở hàng từ kho đó. Mỗi chiếc xe tải loại thứ nhất chi phí hết 6 triệu đồng chở được 4 tấn hàng hoá A và 3 tấn hàng hoá B. Mỗi chiếc xe tải loại thứ hai chi phí hết 4 triệu đồng chở được 3 tấn hàng hoá A và 2 tấn hàng hoá B. Người ta cần chuyển đi từ kho đó ít nhất 21 tấn hàng hoá A và 15 tấn hàng hoá B. Hỏi phải dùng bao nhiêu xe tải mỗi loại để chi phí vận chuyển là ít nhất?

Lời giải:

Gọi x là số xe tải loại thứ nhất và y là số xe tải loại thứ hai cần dùng (x ∈ ℕ, y ∈ ℕ).

Chi phí vận chuyển là: T = 6x + 4y (triệu đồng).

Số tấn hàng hóa A chở được là: 4x + 3y (tấn).

Số tấn hàng hóa B chở được là: 3x + 2y (tấn).

Theo giả thiết, x và y cần thỏa mãn các điều kiện:

x ∈ ℕ, y ∈ ℕ;

4x + 3y ≥ 21;

3x + 2y ≥ 15.

Vì lượng nguyên liệu sử dụng không vượt quá lượng dự trữ nên ta có thể viết dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):

Bài toán đưa về: Tìm x và y là nghiệm của hệ bất phương trình: x0y04x+3y213x+2y15    I sao cho T = 6x + 4y có giá trị nhỏ nhất và x ∈ ℕ, y ∈ ℕ.

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm S của hệ bất phương trình (I) là hình phẳng giới hạn bởi tia Ay, các cạnh AB và BC, tia Cx kể cả biên với A(0; 7,5), B(3; 3), C(5,25; 0) (hình vẽ).

Luyện tập - vận dụng 3 trang 27 Chuyên đề Toán 12 Cánh diều

Bước 2. Tính giá trị của biểu thức T(x; y)  = 6x + 4y tại các đỉnh của miền nghiệm (S):

T(0; 7,5) = 30; T(3; 3) = 30; T(0; 5,25) = 21.

Bước 3. Ta thừa nhận biểu thức T = 6x + 4y có giá trị nhỏ nhất tại một trong các đỉnh của miền nghiệm (S). So sánh ba giá trị thu được của T ở Bước 2, kết hợp với điều kiện x và y là các số tự nhiên, ta được giá trị nhỏ nhất cần tìm là T(3; 3) = 30.

Vậy phải dùng 3 xe tải mỗi loại để chi phí vận chuyển là ít nhất.

Lời giải bài tập Chuyên đề Toán 12 Bài 1: Vận dụng hệ bất phương trình bậc nhất để giải quyết một số bài toán quy hoạch tuyến tính hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 sách mới các môn học