Luyện tập 1 trang 9 Chuyên đề Toán 12 Kết nối tri thức

Luyện tập 1 trang 9 Chuyên đề Toán 12: Một tổ có 10 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên đồng thời 3 học sinh. Gọi X là số học sinh nam trong 3 học sinh được chọn. Lập bảng phân bố xác suất của X.

Lời giải:

Các giá trị của X thuộc tập {0; 1; 2; 3}.

Ta cần tính P(X = 0), P(X = 1), P(X = 2), P(X = 3).

Số kết quả có thể là C163=560.

+) Biến cố (X = 0) là biến cố: “Chọn được 3 học sinh nữ”.

Số kết quả thuận lợi cho biến cố (X = 0) là C63=20.

Vậy PX=0=20560=256.

+) Biến cố (X = 1) là biến cố: “Chọn được 1 học sinh nam và 2 học sinh nữ”.

C101=10 cách chọn 1 học sinh nam trong 10 học sinh nam và C62=15 cách chọn 2 học sinh nữ trong 6 học sinh nữ.

Theo quy tắc nhân ta có 10.15 = 150 cách chọn 1 học sinh nam và 2 học sinh nữ.

Vậy số kết quả thuận lợi cho biến cố (X = 1) là 150.

Do đó P(X = 1) = 150560=1556.

+) Biến cố (X = 2) là biến cố: “Chọn được 2 học sinh nam và 1 học sinh nữ”.

C102=45 cách chọn 2 học sinh nam trong 10 học sinh nam và C61=6 cách chọn 1 học sinh nữ trong 6 học sinh nữ. Theo quy tắc nhân ta có 45.6 = 270 cách chọn 2 học sinh nam và 1 học sinh nữ.

Vậy số kết quả thuận lợi cho biến cố (X = 2) là 270.

Do đó PX=2=270560=2756.

+) Biến cố (X = 3) là biến cố: “Chọn được 3 học sinh nam”.

Số kết quả thuận lợi cho biến cố (X = 3) là C103=120.

Do đó PX=3=120560=1256.

Vậy bảng phân bố xác suất của X là:

Luyện tập 1 trang 9 Chuyên đề Toán 12 Kết nối tri thức

Lời giải bài tập Chuyên đề Toán 12 Bài 1: Biến ngẫu nhiên rời rạc và các số đặc trưng hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 sách mới các môn học