Hãy tìm tới thiết kế mới của thuật toán tìm kiếm nhị phân trên các dãy phần tử đã sắp xếp theo kĩ thuật đệ quy
Hoạt động 2 trang 12 Chuyên đề Tin học 11: Chúng ta đã biết thuật toán tìm kiếm nhị phân trên các dãy phần tử đã sắp xếp. Hãy tìm tới thiết kế mới của thuật toán này theo kĩ thuật đệ quy. Trao đổi, thảo luận và trả lời các câu hỏi sau:
1. Nêu ý tưởng chính của giải thuật tìm kiếm nhị phân sử dụng đệ quy
2. Vị trí nào trong thuật toán có thể gợi ý cho kĩ thuật đệ quy?
3. Phần cơ sở của thiết kế đệ quy nằm ở bước nào?
Lời giải:
1. Ý tưởng chính của giải thuật tìm kiếm nhị phân sử dụng đệ quy là phân chia dãy phần tử đã sắp xếp thành hai nửa bằng nhau, tìm kiếm phần tử cần tìm trong nửa phù hợp và tiếp tục phân chia và tìm kiếm đệ quy cho đến khi tìm thấy phần tử hoặc không tìm thấy. 2. Vị trí trong thuật toán có thể gợi ý cho kĩ thuật đệ quy là phần phân chia dãy phần tử thành hai nửa bằng nhau, tìm kiếm trong nửa phù hợp và tiếp tục phân chia và tìm kiếm đệ quy cho đến khi tìm thấy phần tử hoặc không tìm thấy. Đây là một bài toán con nhỏ hơn của bài toán ban đầu và có thể được giải quyết bằng cùng một thuật toán đệ quy. 3. Phần cơ sở của thiết kế đệ quy nằm ở bước cuối cùng của thuật toán, khi không còn cách nào để phân chia dãy phần tử nữa và ta chỉ còn lại một phần tử hoặc không có phần tử nào để tìm kiếm. Khi đó, ta kết luận bài toán đệ quy đã được giải quyết và trả về kết quả.
Lời giải bài tập Chuyên đề Tin 11 Bài 2: Thiết kế thuật toán đệ quy hay, chi tiết khác:
Xem thêm lời giải bài tập Chuyên đề học tập Tin học 11 Kết nối tri thức hay, chi tiết khác:
Chuyên đề Tin học 11 Bài 3: Thực hành giải toán theo kĩ thuật đệ quy
Chuyên đề Tin học 11 Bài 5: Thực hành thiết kế thuật toán theo kĩ thuật đệ quy
Chuyên đề Tin học 11 Bài 7: Thiết kế thuật toán theo kĩ thuật chia để trị
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải Chuyên đề Tin học 11 Kết nối tri thức
- Giải Chuyên đề Tin học 11 Chân trời sáng tạo
- Giải Chuyên đề Tin học 11 Cánh diều
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều