Trắc nghiệm Toán 12 Bài 5 (có đáp án): Phương trình mũ và phương trình lôgarit (phần 1)



Với bài tập & câu hỏi trắc nghiệm Toán 12 Giải tích Bài 5 : Phương trình mũ và phương trình lôgarit có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

Bài 1: Giải phương trình 10x = 0,00001

A. x = -log4    B. x = -log5    C. x = -4    D. x = -5

10x = 0,00001 ⇔ 10x = 10-5 ⇔ x = -5

Bài 2: Giải phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Cho phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Nghiệm của phương trình này nằm trong khoảng nào dưới đây ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Giải phương trình 32x - 3 = 7 . Viết nghiệm dưới dạng thập phân, làm tròn đến hàng phần nghìn.

A. x ≈ 2,38   B. x ≈ 2,386    C. x ≈ 2,384   D. x ≈ 1,782

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Tính tổng bình phương các nghiệm của phương trình 4x2 + 2 - 9.2x2 + 2 + 8 = 0

A. 2   B. 4   C. 17   D. 65

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6: Giải phương trình 4x + 2x + 1 - 15 = 0. Viết nghiệm tìm được dưới dạng thập phân, làm tròn đến hàng phần trăm

A. x ≈ 0,43     B. x ≈ 0,63    C. x ≈ 1,58    D. x ≈ 2,32

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Giả sử x là nghiệm của phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 0   B. ln3    C. –ln3    D. 1/ln3

Để ý rằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

nên phương trình đã cho tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bài 8: Tính tích tất cả các nghiệm của phương trình 32x2 + 2x + 1 - 28.3x2 + x + 9 = 0

A. -4    B. -2    C. 2    D. 4

Ta có: 32x2 + 2x + 1 -28.3x2 + x + 9 = 0 ⇔ 3.32(x2 + x) - 28.3x2 + x + 9 = 0

Đặt t = 3x2 + x > 0 nhận được phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Với t = 1/3 = 3-1 được 3x2 + x = 3-1 ⇔ x2 + x + 1 = 0(vô nghiệm)

Với t = 9 được phương trình 3x2 + x = 9 = 32 ⇔ x2 + x = 2

x2 + x - 2 = 0 ⇔ x -2 hoặc x = 1

Tích của hai nghiệm này bằng -2.

Chọn đáp án B

Bài 9: Tìm nghiệm của phương trình 2x - 1 = 31 - 2x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Có nhiều cách biến đổi phương trình này. Tuy nhiên, nhận thấy các biểu thức trong các phương án đều chứa log23 , nên ta lấy lôgarit cơ số 2 hai vế của phương trình để nhận được:

(x - 1) = (1 - 2x)log23

⇔ x - 1 = log23 - 2xlog23

⇔ x + 2xlog23 = log23 + 1

⇔ x(2log23 + 1) = log23 + 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D

Bài 10: Giải phương trình (x2 - 2x)lnx = lnx3

A. x = 1, x = 3    B. x = -1, x = 3     C. x = ±1, x = 3    D. x = 3

Điều kiện x > 0. Khi đó phương trình đã cho tương đương với

(x2 -2x)lnx = 3lnx ⇔ (x2 - 2x + 3)lnx = 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy phương trình có hai nghiệm là x = 1, x = 3 .

Chọn đáp án A.

Chú ý. Sai lầm thường gặp là quên điều kiện dẫn đến không loại được nghiệm x = -1 và chọn phương án nhiễu C.

Thậm chí, có thể học sinh biến đổi (x2 - 2x)lnx = 3lnx ⇔ x2 -2x = 3(giản ước cho lnx) dẫn đến mất nghiệm x = 1 và chọn phương án nhiễu D.

Bài 11: Nếu log7(log3(log2x)) = 0 thì x-1/2 bằng :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

log7(log3(log2x)) = 0 ⇔ log3(log2x) = 70 = 1

⇔ log2x = 3t ⇔ x = 23 = 8

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C

Bài 12: Giải phương trình logx = log(x + 3) - log(x - 1)

A. x = 1   B. x = 3   C. x = 4    D. x = -1, x = 3

Điều kiện x > 1. Khi đó phương trình tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Loại nghiệm x = -1 do không thỏa mãn điều kiện. Phương trình có một nghiệm x = 3.

Chọn đáp án B.

Chú ý: Cũng như ở ví dụ 5, sai lầm học sinh dễ gặp bài này là do chủ quan muốn tiết kiệm thời gian mà quên đặt điều kiện, dẫn tới không loại được nghiệm x = -1 và chọn phương án nhiễu D.

Bài 13: Giải phương trình log√2(x + 1) = log2(x2 + 2) - 1

A. x = 1   B. x = 0   C. x = 0, x = -4   D. x = 0, x = 1

Điều kiện x > -1. Khi đó phương trình tương đương với

2log2(x + 1) = log2(x2 + 2)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B

Bài 14: Cho biết logb2x + logx2b = 1, b > 0, b ≠ 1, x ≠ 1. Khi đó x bằng:

A. b    B. √b    C. 1/b     D. 1/b2

Điều kiện: x > 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Chú ý. Khác với các ví dụ trên, các biến đổi trong ví dụ này không làm mở rộng miền xác định của phương trình (x > 0). Do đó ta đã không nhất thiết phải đặt điều kiện x > 0. Trong nhiều trường hợp việc bỏ qua đặt điều kiện sẽ làm đơn giản hơn và tiết kiệm thời gian.

Bài 15: Cho biết 2x = 8y + 1 và 9y = 3x - 9 . Tính giá trị của x + y

A. 21     B. 18   C. 24    D. 27

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x + y =27.

Chọn đáp án D.

Bài 16: Giả sử x, y là hai số thực thỏa mãn đồng thời 3x2 - 2xy = 1 và 2log3x = log3(y + 3). Tính x + y

A. 9/4     B. 3/2    C. 3   D. 9

Điều kiện x > 0, y > -3.

Ta có: 3x2 - 2xy = 1 = 30 ⇔ x2 - 2xy = 0

⇔ x(x - 2y) = 0 ⇔ x - 2y = 0 (x > 0) ⇔ x = 2y (1)

2log3x = log3( y + 3) ⇔ log3x2 = log3(y + 3) ⇔ x2 = y + 3 (2)

Thế (1) vào (2) ta được:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi Tốt nghiệp THPT có đáp án hay khác:




Giải bài tập lớp 12 sách mới các môn học